Sinead Toomey
Royal College of Surgeons in Ireland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sinead Toomey.
Diabetes | 2007
Fiona Moloney; Sinead Toomey; Enda Noone; A. P. Nugent; Bernard Allan; Christine E. Loscher; Helen M. Roche
Adipose tissue may be the source of insulin desensitizing proinflammatory molecules that predispose to insulin resistance. This study investigated whether dietary fatty acids could attenuate the proinflammatory insulin-resistant state in obese adipose tissue. The potential antidiabetic effect of cis-9, trans-11–conjugated linoleic acid (c9,t11-CLA) was determined, focusing on the molecular markers of insulin sensitivity and inflammation in adipose tissue of ob/ob C57BL-6 mice. Feeding a c9,t11-CLA–enriched diet reduced fasting glucose (P < 0.05), insulin (P < 0.05), and triacylglycerol concentrations (P < 0.01) and increased adipose tissue plasma membrane GLUT4 (P < 0.05) and insulin receptor (P < 0.05) expression compared with the control linoleic acid–enriched diet. Interestingly, after the c9,t11-CLA diet, adipose tissue macrophage infiltration was less, with marked downregulation of several inflammatory markers in adipose tissue, including reduced tumor necrosis factor-α and CD68 mRNA (P < 0.05), nuclear factor-κB (NF-κB) p65 expression (P < 0.01), NF-κB DNA binding (P < 0.01), and NF-κB p65, p50, c-Rel, p52, and RelB transcriptional activity (P < 0.01). To define whether these observations were direct effects of the nutrient intervention, complimentary cell culture studies showed that c9,t11-CLA inhibited tumor necrosis factor-α–induced downregulation of insulin receptor substrate 1 and GLUT4 mRNA expression and promoted insulin-stimulated glucose transport in 3T3-L1 adipocytes compared with linoleic acid. This study suggests that altering fatty acid composition may attenuate the proinflammatory state in adipose tissue that predisposes to obesity-induced insulin resistance.
Circulation | 2003
Orina Belton; Angela Duffy; Sinead Toomey; Desmond J. Fitzgerald
Background—Cyclooxygenase (COX) activity is induced in human atherosclerosis, and the products formed may modify the disease directly or through an effect on platelets. We examined the role of COX-1 and -2 on platelet vessel wall interactions and development of atherosclerosis in a murine model. Methods and Results—Apolipoprotein E–deficient (apoE−/−) mice fed a 1% cholesterol diet were treated with a selective COX-1 inhibitor (SC-560), a selective COX-2 inhibitor (SC-236), or vehicle. Urinary prostacyclin and thromboxane metabolites (2,3-dinor-6-keto-PGF1&agr; and 2,3-dinor-TXB2) were increased in the apoE−/− knockout mouse. There was also induction of both COX isoforms in the vascular lesions formed, which stained for CD41, a platelet-specific marker, and for CD40L. Selective inhibition of COX-2 had no effect on lesion formation and, despite selective reduction in prostacyclin generation, had no effect on platelet activity, as measured by thromboxane formation or platelet deposition. Selective inhibition of COX-1 reduced 2,3-dinor-TXB2 generation and lesion formation. However, platelet deposition on the vessel wall persisted, with well-defined monolayers seen. There was also persistent expression of the macrophage marker CD68 and increased expression of the cell death protein Bax. In contrast to lesion development, the selective COX-1 inhibitor had no effect on the regression of evolving lesions. Conclusions—COX-1 plays an important role in the early stages of lesion development in the apoE−/− knockout model of atherosclerosis, preventing gross lesion formation in the face of continued vascular injury and inflammation. Despite the inhibition of prostacyclin, COX-2 inhibition had no effect on lesion development or platelet–vessel wall interactions.
Conference on over- and undernutrition: challenges and approaches, University of Surrey, Guildford, UK, 29 June-2 July 2009. | 2010
E. Oliver; Fiona C. McGillicuddy; Catherine M. Phillips; Sinead Toomey; Helen M. Roche
The WHO estimate that >1 x 10(6) deaths in Europe annually can be attributed to diseases related to excess body weight, and with the rising global obesity levels this death rate is set to drastically increase. Obesity plays a central role in the metabolic syndrome, a state of insulin resistance that predisposes patients to the development of CVD and type 2 diabetes mellitus. Obesity is associated with low-grade chronic inflammation characterised by inflamed adipose tissue with increased macrophage infiltration. This inflammation is now widely believed to be the key link between obesity and development of insulin resistance. In recent years it has been established that activation of pro-inflammatory pathways can cross talk with insulin signalling pathways via a number of mechanisms including (a) down-regulation of insulin signalling pathway proteins (e.g. GLUT4 and insulin receptor substrate (IRS)-1), (b) serine phosphorylation of IRS-1 blocking its tyrosine phosphorylation in response to insulin and (c) induction of cytokine signalling molecules that sterically hinder insulin signalling by blocking coupling of the insulin receptor to IRS-1. Long-chain (LC) n-3 PUFA regulate gene expression (a) through transcription factors such as PPAR and NF-kappaB and (b) via eicosanoid production, reducing pro-inflammatory cytokine production from many different cells including the macrophage. LC n-3 PUFA may therefore offer a useful anti-inflammatory strategy to decrease obesity-induced insulin resistance, which will be examined in the present review.
Proteomics | 2009
Baukje de Roos; Vanessa Rungapamestry; Karen Ross; Garry J. Rucklidge; Martin D. Reid; Gary Duncan; Graham W. Horgan; Sinead Toomey; John A. Browne; Christine E. Loscher; Kingston H. G. Mills; Helen M. Roche
The development of insulin resistance in the obese is associated with chronic, low‐grade inflammation. We aimed to identify novel links between obesity, insulin resistance and the inflammatory response by comparing C57BL/6 with type I interleukin‐1 receptor knockout (IL‐1RI−/−) mice, which are protected against diet‐induced insulin resistance. Mice were fed a high‐fat diet for 16 wk. Insulin sensitivity was measured and proteomic analysis was performed on adipose, hepatic and skeletal muscle tissues. Despite an equal weight gain, IL‐1RI−/− mice had lower plasma glucose, insulin and triacylglycerol concentrations, compared with controls, following dietary treatment. The higher insulin sensitivity in IL‐1RI−/− mice was associated with down‐regulation of antioxidant proteins and proteasomes in adipose tissue and hepatic soluble epoxide hydrolase, consistent with a compromised inflammatory response as well as increased glycolysis and decreased fatty acid β‐oxidation in their muscle. Their lower hepatic triacylglycerol concentrations may reflect decreased flux of free fatty acids to the liver, decreased hepatic fatty acid‐binding protein expression and decreased lipogenesis. Correlation analysis revealed down‐regulation of classical biomarkers of ER stress in their adipose tissue, suggesting that disruption of the IL‐1RI‐mediated inflammatory response may attenuate cellular stress, which was associated with significant protection from diet‐induced insulin resistance, independent of obesity.
PLOS Computational Biology | 2011
Melissa J. Morine; Audrey C. Tierney; Ben van Ommen; Hannelore Daniel; Sinead Toomey; Ingrid M.F. Gjelstad; Isobel Claire Gormley; Pablo Perez-Martinez; Christian A. Drevon; Jose Lopez-Miranda; Helen M. Roche
Understanding the molecular link between diet and health is a key goal in nutritional systems biology. As an alternative to pathway analysis, we have developed a joint multivariate and network-based approach to analysis of a dataset of habitual dietary records, adipose tissue transcriptomics and comprehensive plasma marker profiles from human volunteers with the Metabolic Syndrome. With this approach we identified prominent co-expressed sub-networks in the global metabolic network, which showed correlated expression with habitual n-3 PUFA intake and urinary levels of the oxidative stress marker 8-iso-PGF2α. These sub-networks illustrated inherent cross-talk between distinct metabolic pathways, such as between triglyceride metabolism and production of lipid signalling molecules. In a parallel promoter analysis, we identified several adipogenic transcription factors as potential transcriptional regulators associated with habitual n-3 PUFA intake. Our results illustrate advantages of network-based analysis, and generate novel hypotheses on the transcriptomic link between habitual n-3 PUFA intake, adipose tissue function and oxidative stress.
Current Opinion in Clinical Nutrition and Metabolic Care | 2006
Sinead Toomey; Jolene McMonagle; Helen M. Roche
Purpose of reviewMuch attention has focused on the therapeutic potential of conjugated linoleic acid with the most abundant isomers being cis-9,trans-11 conjugated linoleic acid and trans-10,cis-12 conjugated linoleic acid. Initial animal studies associated conjugated linoleic acid with beneficial health properties, such as reducing the risk of cancer, diabetes, atherosclerosis, inflammation and obesity. This review has appraised the evidence in relation to the effect of conjugated linoleic acid on components of the metabolic syndrome (clinically or experimentally), in particular, obesity, insulin resistance, atherosclerosis and inflammation. Recent findingsMore recent human conjugated linoleic acid supplementation studies have often shown conflicting and less convincing health benefits. The marked variation between studies may reflect the isomer-specific effect of the individual conjugated linoleic acid isomers, which can often have opposing effects. Detrimental effects have been observed in some studies, in particular after supplementation with the trans-10,cis-12 conjugated linoleic acid isomer. SummaryFurther studies and long-term clinical trials will be required to determine the efficacy and safety of conjugated linoleic acid isomers before conjugated linoleic acid could be considered as a functional nutrient in humans.
BMC Bioinformatics | 2010
Melissa J. Morine; Jolene McMonagle; Sinead Toomey; Clare M. Reynolds; Aidan P. Moloney; Isobel Claire Gormley; Peadar Ó Gaora; Helen M. Roche
BackgroundCurrently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets.ResultsHere, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fishers exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways - selenoamino acid metabolism and steroid biosynthesis - illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect.ConclusionBi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fishers exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease.
Journal of Nutritional Biochemistry | 2013
Melissa J. Morine; Sinead Toomey; Fiona C. McGillicuddy; Clare M. Reynolds; Karen A. Power; John A. Browne; Christine E. Loscher; Kingston H. G. Mills; Helen M. Roche
A subacute inflammatory phenotype is implicated in the pathology of insulin resistance (IR) and type 2 diabetes mellitus. Interleukin (IL)-1α and IL-1β are produced by innate immune cells, including macrophages, and mediate their inflammatory response through the IL-1 type I receptor (IL-IRI). This study sought to understand the transcriptomic signature of adipose tissue in obese IL-1RI(-/-) mice. Following dietary intervention, markers of insulin sensitivity and inflammation in adipose tissue were determined, and gene expression was assessed with microarrays. IL-1RI(-/-) mice fed a high-fat diet (HFD) had significantly lower plasma inflammatory cytokine concentrations than wild-type mice. Metabolic network analysis of transcriptomic effects identified up-regulation and co-expression of genes involved in lipolysis, lipogenesis and tricarboxylic acid (TCA) cycle. Further assessment of gene expression in a network of protein interactions related to innate immunity highlighted Stat3 as a potential transcriptional regulator of IL-1 signalling. The complex, downstream effects of IL-1 signalling through the IL-1RI receptor remain poorly defined. Using network-based analyses of transcriptomic signatures in IL-1RI(-/-) mice, we have identified expression changes in genes involved in lipid cycling and TCA cycle, which may be more broadly indicative of a restoration of mitochondrial function in the context of HFD. Our results also highlight a potential role for Stat3 in linking IL-1 signalling to adipogenesis and IR.
Cancer Microenvironment | 2015
Yasir Y. Elamin; Shereen Rafee; Sinead Toomey; Bryan T. Hennessy
Angiogenesis or new vessel formation is essential for tumour growth and progression. Therefore, targeting angiogenesis has been an attractive strategy in the treatment ofcancer. Bevacizumab is a recombinant humanized monoclonal IgG1 antibody thattargets vascular endothelial growth factor-A (VEGF-A) - a key molecular player inangiogenesis. Bevacizumumab has shown clinical efficacy in phase III clinical trials inseveral advanced solid malignancies. The clinical efficacy of bevacizumumab isprimarily due to its antiangiogenic effects; however, there are direct antitumor effectsand immunomodulatory effects. Enhancing the immune system to restore itsantitumour activity has been utilized successfully in clinical setting. In this article we willdiscuss the possible immunomodulatory effects of the most clinically usedantiangiogenic agent; bevacizumumab.
Proteomics | 2012
Vanessa Rungapamestry; Jolene McMonagle; Clare M. Reynolds; Garry J. Rucklidge; Martin D. Reid; Gary Duncan; Karen Ross; Graham W. Horgan; Sinead Toomey; Aidan P. Moloney; Baukje de Roos; Helen M. Roche
cis‐9, trans‐11‐Conjugated linoleic acid (c9 t11 CLA) exerts anti‐diabetic effects by improving systemic insulin sensitivity and inflammation. Levels of CLA in beef can be increased by feeding cattle on pasture. This study aimed to explore the efficacy of a CLA‐rich diet (0.6% w/w c9 t11 CLA), presented as beef enriched with CLA or beef supplemented with synthetic CLA (c9 t11 CLA), for 28 days on molecular biomarkers of the metabolic syndrome, and adipose, hepatic, and skeletal muscle proteome in male ob/ob mice. Despite equal weight gain, CLA‐fed mice had lower plasma glucose, insulin, non‐esterified fatty acid, triacylglycerol and interleukin‐6, and higher adiponectin concentrations than controls. c9 t11 CLA induced differential regulation of redox status across all tissues, and decreased hepatic and muscle endoplasmic reticulum stress. CLA also modulated mechanistic links between the actin cytoskeleton, insulin signalling, glucose transport and inflammation in the adipose tissue. In the liver and muscle, c9 t11 CLA improved metabolic flexibility through co‐ordination between carbohydrate and energy metabolism. c9 t11 CLA may ameliorate systemic insulin sensitivity in obesity‐induced diabetes by altering cellular stress and redox status, and modulating nutrient handling in key insulin‐sensitive tissues through complex biochemical interplay among representative proteomic signatures.