Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sini Heinonen is active.

Publication


Featured researches published by Sini Heinonen.


Diabetes | 2015

Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity

Sini Heinonen; Jana Buzkova; Maheswary Muniandy; Risto Kaksonen; Miina Ollikainen; Khadeeja Ismail; Antti Hakkarainen; J. Lundbom; Nina Lundbom; Katriina Vuolteenaho; Eeva Moilanen; Jaakko Kaprio; Aila Rissanen; Anu Suomalainen; Kirsi H. Pietiläinen

Low mitochondrial number and activity have been suggested as underlying factors in obesity, type 2 diabetes, and metabolic syndrome. However, the stage at which mitochondrial dysfunction manifests in adipose tissue after the onset of obesity remains unknown. Here we examined subcutaneous adipose tissue (SAT) samples from healthy monozygotic twin pairs, 22.8–36.2 years of age, who were discordant (ΔBMI >3 kg/m2, mean length of discordance 6.3 ± 0.3 years, n = 26) and concordant (ΔBMI <3 kg/m2, n = 14) for body weight, and assessed their detailed mitochondrial metabolic characteristics: mitochondrial-related transcriptomes with dysregulated pathways, mitochondrial DNA (mtDNA) amount, mtDNA-encoded transcripts, and mitochondrial oxidative phosphorylation (OXPHOS) protein levels. We report global expressional downregulation of mitochondrial oxidative pathways with concomitant downregulation of mtDNA amount, mtDNA-dependent translation system, and protein levels of the OXPHOS machinery in the obese compared with the lean co-twins. Pathway analysis indicated downshifting of fatty acid oxidation, ketone body production and breakdown, and the tricarboxylic acid cycle, which inversely correlated with adiposity, insulin resistance, and inflammatory cytokines. Our results suggest that mitochondrial biogenesis, oxidative metabolic pathways, and OXPHOS proteins in SAT are downregulated in acquired obesity, and are associated with metabolic disturbances already at the preclinical stage.


The Journal of Clinical Endocrinology and Metabolism | 2016

Obesity Is Associated With Low NAD+/SIRT Pathway Expression in Adipose Tissue of BMI-Discordant Monozygotic Twins

Sakari Jukarainen; Sini Heinonen; Joel T. Rämö; Rita Rinnankoski-Tuikka; Elisabeth Rappou; Mark Tummers; Maheswary Muniandy; Antti Hakkarainen; Jesper Lundbom; Nina Lundbom; Jaakko Kaprio; Aila Rissanen; Eija Pirinen; Kirsi H. Pietiläinen

CONTEXT Sirtuins (SIRTs) regulate cellular metabolism and mitochondrial function according to the energy state of the cell reflected by NAD(+) levels. OBJECTIVE Our aim was to determine whether expressions of SIRTs and NAD(+) biosynthesis genes are affected by acquired obesity and how possible alterations are connected with metabolic dysfunction while controlling for genetic and familial factors. DESIGN AND PARTICIPANTS We studied a cross-sectional sample of 40 healthy pairs of monozygotic twins, including 26 pairs who were discordant for body mass index (within-pair difference > 3 kg/m(2)), from the FinnTwin12 and FinnTwin16 cohorts. MAIN OUTCOME MEASURES Subcutaneous adipose tissue (SAT) transcriptomics was analyzed by using Affymetrix U133 Plus 2.0 chips, total SAT (poly-ADP) ribose polymerase (PARP) activity by an ELISA kit, body composition by dual-energy x-ray absorptiometry and magnetic resonance imaging/spectroscopy, and insulin sensitivity by an oral glucose tolerance test. RESULTS SIRT1, SIRT3, SIRT5, NAMPT, NMNAT2, NMNAT3, and NRK1 expressions were significantly down-regulated and the activity of main cellular NAD(+) consumers, PARPs, trended to be higher in the SAT of heavier co-twins of body mass index-discordant pairs. Controlling for twin-shared factors, SIRT1, SIRT3, NAMPT, NMNAT3, and NRK1 were significantly negatively correlated with adiposity, SIRT1, SIRT5, NMNAT2, NMNAT3, and NRK1 were negatively correlated with inflammation, and SIRT1 and SIRT5 were positively correlated with insulin sensitivity. Expressions of genes involved in mitochondrial unfolded protein response were also significantly down-regulated in the heavier co-twins. CONCLUSIONS Our data highlight a strong relationship of reduced NAD(+)/SIRT pathway expression with acquired obesity, inflammation, insulin resistance, and impaired mitochondrial protein homeostasis in SAT.


International Journal of Obesity | 2014

Adipocyte morphology and implications for metabolic derangements in acquired obesity

Sini Heinonen; Lilli Saarinen; Jussi Naukkarinen; Amaia Rodríguez; Gema Frühbeck; Antti Hakkarainen; J. Lundbom; Nina Lundbom; Katriina Vuolteenaho; Eeva Moilanen; P Arner; S. Hautaniemi; Anu Suomalainen; Jaakko Kaprio; Aila Rissanen; Kirsi H. Pietiläinen

Background:Adipocyte size and number have been suggested to predict the development of metabolic complications in obesity. However, the genetic and environmental determinants behind this phenomenon remain unclear.Methods:We studied this question in rare-weight discordant (intra-pair difference (Δ) body mass index (BMI) 3–10 kg m−2, n=15) and concordant (ΔBMI 0–2 kg m−2, n=5) young adult (22–35 years) monozygotic twin pairs identified from 10 birth cohorts of Finnish twins (n=5 500 pairs). Subcutaneous abdominal adipocyte size from surgical biopsies was measured under a light microscope. Adipocyte number was calculated from cell size and total body fat (D × A).Results:The concordant pairs were remarkably similar for adipocyte size and number (intra-class correlations 0.91–0.92, P<0.01), suggesting a strong genetic control of these measures. In the discordant pairs, the obese co-twins (BMI 30.6±0.9 kg m−2) had significantly larger adipocytes (volume 547±59 pl), than the lean co-twins (24.9±0.9 kg m−2; 356±34 pl, P<0.001). In 8/15 pairs, the obese co-twins had less adipocytes than their co-twins. These hypoplastic obese twins had significantly higher liver fat (spectroscopy), homeostatic model assessment-index, C-reactive protein and low-density lipoprotein cholesterol than their lean co-twins. Hyperplastic obesity was observed in the rest (7/15) of the pairs, obese and lean co-twins having similar metabolic measures. In all pairs, Δadipocyte volume correlated positively and Δcell number correlated negatively with Δhomeostatic model assessment-index and Δlow-density lipoprotein, independent of Δbody fat. Transcripts most significantly correlating with Δadipocyte volume were related to a reduced mitochondrial function, membrane modifications, to DNA damage and cell death.Conclusions:Together, hypertrophy and hypoplasia in acquired obesity are related to metabolic dysfunction, possibly through disturbances in mitochondrial function and increased cell death within the adipose tissue.


The Journal of Clinical Endocrinology and Metabolism | 2016

Weight Loss Is Associated With Increased NAD+/SIRT1 Expression But Reduced PARP Activity in White Adipose Tissue

Elisabeth Rappou; Sakari Jukarainen; Rita Rinnankoski-Tuikka; Sanna M. Kaye; Sini Heinonen; Antti Hakkarainen; Jesper Lundbom; Nina Lundbom; Virva Saunavaara; Aila Rissanen; Kirsi A. Virtanen; Eija Pirinen; Kirsi H. Pietiläinen

CONTEXT Sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs) are 2 important nicotinamide adenine dinucleotide (NAD)(+)-dependent enzyme families with opposing metabolic effects. Energy shortage increases NAD(+) biosynthesis and SIRT activity but reduces PARP activity in animals. Effects of energy balance on these pathways in humans are unknown. OBJECTIVE We compared NAD(+)/SIRT pathway expressions and PARP activities in sc adipose tissue (SAT) between lean and obese subjects and investigated their change in the obese subjects during a 12-month weight loss. DESIGN, SETTING AND PARTICIPANTS SAT biopsies were obtained from 19 clinically healthy obese subjects (mean ± SE body mass index, 34.6 ± 2.7 kg/m(2)) during a weight-loss intervention (0, 5, and 12 mo) and from 19 lean reference subjects (body mass index, 22.7 ± 1.1 kg/m(2)) at baseline. MAIN OUTCOME MEASURES SAT mRNA expressions of SIRTs 1-7 and the rate-limiting gene in NAD(+) biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT) were measured by Affymetrix, and total PARP activity by ELISA kit. RESULTS SIRT1, SIRT3, SIRT7, and NAMPT expressions were significantly lower, whereas total PARP activity was increased in obese compared with lean subjects. SIRT1 and NAMPT expressions increased in obese subjects between 0 and 5 months, after a mean weight loss of 11.7%. In subjects who continued to lose weight between 5 and 12 months, SIRT1 expression increased progressively, whereas in subjects with weight regain, SIRT1 reverted to baseline levels. PARP activity significantly decreased in all subjects upon weight loss. CONCLUSIONS Calorie restriction is an attractive strategy to improve the NAD(+)/SIRT pathway and decrease PARPs in SAT in human obesity.


International Journal of Obesity | 2017

Gene expression profile of subcutaneous adipose tissue in BMI-discordant monozygotic twin pairs unravels molecular and clinical changes associated with sub-types of obesity

Maheswary Muniandy; Sini Heinonen; Hannele Yki-Järvinen; Antti Hakkarainen; J. Lundbom; Nina Lundbom; Jaakko Kaprio; Aila Rissanen; Miina Ollikainen; Kirsi H. Pietiläinen

Background:Subcutaneous adipose tissue (SAT) undergoes major changes in obesity, but little is known about the whole-genome scale patterns of these changes or about their variation between different obesity sub-groups. We sought to compare how transcriptomics profiles in SAT differ between monozygotic (MZ) co-twins who are discordant for body mass index (BMI), whether the profiles vary between twin pairs and whether the variation can be linked to clinical characteristics.Methods:We analysed the transcriptomics (Affymetrix U133 Plus 2.0) patterns of SAT in young MZ twin pairs (n=26, intra-pair difference in BMI >3 kg m−2, aged 23–36), from 10 birth cohorts of adult Finnish twins. The clinical data included measurements of body composition, insulin resistance, lipids and adipokines.Results:We found 2108 genes differentially expressed (false discovery rate (FDR)<0.05) in SAT of the BMI-discordant pairs. Pathway analyses of these genes revealed a significant downregulation of mitochondrial oxidative pathways (P<0.05) and upregulation of inflammation pathways (P<0.05). Hierarchical clustering of heavy/lean twin ratios, representing effects of acquired obesity in the transcriptomics data, revealed three sub-groups with different molecular profiles (FDR<0.05). Analyses comparing these sub-groups showed that, in the heavy co-twins, downregulation of the mitochondrial pathways, especially that of branched chain amino acid degradation was more evident in two clusters while and upregulation of the inflammatory response was most evident in the last, presumably the unhealthiest cluster. High-fasting insulin levels and large adipocyte diameter were the predominant clinical characteristic of the heavy co-twins in this cluster (Bonferroni-adjusted P<0.05).Conclusions:This is the first study in BMI-discordant MZ twin pairs reporting sub-types of obesity based on both SAT gene expression profiles and clinical traits. We conclude that a decrease in mitochondrial BCAA degradation and an increase in inflammation in SAT co-occur and associate with hyperinsulinemia and large adipocyte size in unhealthy obesity.


Frontiers in Immunology | 2017

Upregulation of Early and Downregulation of Terminal Pathway Complement Genes in Subcutaneous Adipose Tissue and Adipocytes in Acquired Obesity

Sanna M. Kaye; A. Inkeri Lokki; Anna Hanttu; Eija Nissilä; Sini Heinonen; Antti Hakkarainen; Jesper Lundbom; Nina Lundbom; Lilli Saarinen; Olli Tynninen; Maheswary Muniandy; Aila Rissanen; Jaakko Kaprio; Seppo Meri; Kirsi H. Pietiläinen

Inflammation is an important mediator of obesity-related complications such as the metabolic syndrome but its causes and mechanisms are unknown. As the complement system is a key mediator of inflammation, we studied whether it is activated in acquired obesity in subcutaneous adipose tissue (AT) and isolated adipocytes. We used a special study design of genetically matched controls of lean and heavy groups, rare monozygotic twin pairs discordant for body mass index (BMI) [n = 26, within-pair difference (Δ) in body mass index, BMI >3 kg/m2] with as much as 18 kg mean Δweight. Additionally, 14 BMI-concordant (BMI <3 kg/m2) served as a reference group. The detailed measurements included body composition (DEXA), fat distribution (MRI), glucose, insulin, adipokines, C3a and SC5b-9 levels, and the expression of complement and insulin signaling pathway-related genes in AT and adipocytes. In both AT and isolated adipocytes, the classical and alternative pathway genes were upregulated, and the terminal pathway genes downregulated in the heavier co-twins of the BMI-discordant pairs. The upregulated genes included C1q, C1s, C2, ficolin-1, factor H, receptors for C3a and C5a (C5aR1), and the iC3b receptor (CR3). While the terminal pathway components C5 and C6 were downregulated, its inhibitor clusterin was upregulated. Complement gene upregulation in AT and adipocytes correlated positively with adiposity and hyperinsulinemia and negatively with the expression of insulin signaling-related genes. Plasma C3a, but not SC5b-9, levels were elevated in the heavier co-twins. There were no differences between the co-twins in BMI-concordant pairs. Obesity is associated with increased expression of the early, but not late, complement pathway components and of key receptors. The twins with acquired obesity have therefore an inflated inflammatory activity in the AT. The results suggest that complement is likely involved in orchestrating clearance of apoptotic debris and inflammation in the AT.


The Journal of Steroid Biochemistry and Molecular Biology | 2017

Metabolism of sex steroids is influenced by acquired adiposity—A study of young adult male monozygotic twin pairs

Veera Vihma; Jussi Naukkarinen; Ursula Turpeinen; Esa Hämäläinen; Jaakko Kaprio; Aila Rissanen; Sini Heinonen; Antti Hakkarainen; Jesper Lundbom; Nina Lundbom; Tomi S. Mikkola; Matti J. Tikkanen; Kirsi H. Pietiläinen

Obesity and ageing are associated with lower serum testosterone levels in men. How fat distribution or adipose tissue metabolism, independent of genetic factors and age, are related to sex steroid metabolism is less clear. We studied the associations between adiposity and serum sex hormone concentrations, and mRNA expression of genes regulating sex hormone metabolism in adipose tissue in young adult male monozygotic (MZ) twin pairs. The subjects [n=18 pairs; mean age, 32 years; individual body mass indexes (BMIs) 22-36kg/m2] included 9 male MZ twin pairs discordant for BMI [intra-pair difference (Δ) in BMI ≥3kg/m2]. Sex steroid concentrations were determined by liquid chromatography-tandem mass spectrometry, body composition by dual-energy X-ray absorptiometry and magnetic resonance imaging, and mRNA expressions from subcutaneous adipose tissue by Affymetrix. In BMI-discordant pairs (mean ΔBMI=5.9kg/m2), serum dihydrotestosterone (DHT) was lower [mean 1.9 (SD 0.7) vs. 2.4 (1.0) nmol/l, P=0.040] and mRNA expressions of DHT-inactivating AKR1C2 (P=0.021) and cortisol-producing HSD11B1 (P=0.008) higher in the heavier compared to the leaner co-twins. Serum free 17β-estradiol (E2) was higher [2.3 (0.5) vs. 1.9 (0.5) pmol/l, P=0.028], and in all twin pairs, serum E2 and estrone concentrations were higher in the heavier than in the leaner co-twins [107 (28) vs. 90 (22) pmol/l, P=0.006; and 123 (43) vs. 105 (27) pmol/l, P=0.025]. Within all twin pairs, i.e. independent of genetic effects and age, 1) the amount of subcutaneous fat inversely correlated with serum total and free testosterone, DHT, and sex hormone-binding globulin (SHBG) concentrations (P<0.01 for all), 2) intra-abdominal fat with total testosterone and SHBG (P<0.05), and 3) liver fat with SHBG (P=0.006). Also, 4) general and intra-abdominal adiposity correlated positively with mRNA expressions of AKR1C2, HSD11B1, and aromatase in adipose tissue (P<0.05). In conclusion, acquired adiposity was associated with decreased serum DHT and increased estrogen concentrations, independent of genetic factors and age. The reduction of DHT could be linked to its increased degradation (by AKR1C2 and HSD11B1) and increased estrogen levels to increased adiposity-related expression of aromatase in adipose tissue.


International Journal of Obesity | 2016

Biotin-dependent functions in adiposity: a study of monozygotic twin pairs

Elina Järvinen; Khadeeja Ismail; Maheswary Muniandy; Leonie H. Bogl; Sini Heinonen; Mark Tummers; S Miettinen; Jaakko Kaprio; Aila Rissanen; Miina Ollikainen; Kirsi H. Pietiläinen

Background:Biotin acts as a coenzyme for carboxylases regulating lipid and amino-acid metabolism. We investigated alterations of the biotin-dependent functions in obesity and the downstream effects of biotin restriction in adipocytes in vitro.Subjects:Twenty-four monozygotic twin pairs discordant for body mass index (BMI). Mean within-pair difference (heavy-lean co-twin, Δ) of BMI was 6.0 kg m–2 (range 3.1–15.2 kg m–2).Methods:Adipose tissue (AT) DNA methylation, gene expression of AT and adipocytes, and leukocytes (real-time quantitative PCR), serum biotin, C-reactive protein (CRP) and triglycerides were measured in the twins. Human adipocytes were cultured in low and control biotin concentrations and analyzed for lipid droplet content, mitochondrial morphology and mitochondrial respiration.Results:The gene expression levels of carboxylases, PCCB and MCCC1, were upregulated in the heavier co-twins’ leukocytes. ΔPCCB (r=0.91, P=0.0046) and ΔMCCC1 (r=0.79, P=0.036) correlated with ΔCRP within-pairs. Serum biotin levels were lower in the heavier (274 ng l–1) than in the lean co-twins (390 ng l–1, P=0.034). ΔBiotin correlated negatively with Δtriglycerides (r=–0.56, P=0.045) within-pairs. In AT, HLCS and ACACB were hypermethylated and biotin cycle genes HLCS and BTD were downregulated (P<0.05). Biotin-dependent carboxylases were downregulated (ACACA, ACACB, PCCB, MCCC2 and PC; P<0.05) in both AT and adipocytes of the heavier co-twins. Adipocytes cultured in low biotin had decreased lipid accumulation, altered mitochondrial morphology and deficient mitochondrial respiration.Conclusions:Biotin-dependent functions are modified by adiposity independent of genetic effects, and correlate with inflammation and hypertriglyceridemia. Biotin restriction decreases lipid accumulation and respiration, and alters mitochondrial morphology in adipocytes.


International Journal of Obesity | 2018

Adipose tissue mitochondrial capacity associates with long-term weight loss success

Riikka Jokinen; R Rinnankoski-Tuikka; Sanna M. Kaye; L Saarinen; Sini Heinonen; Maarit Myöhänen; E Rappou; S Jukarainen; Aila Rissanen; A Pessia; V Velagapudi; K A Virtanen; Eija Pirinen; Kirsi H. Pietiläinen

Objectives:We investigated whether (1) subcutaneous adipose tissue (SAT) mitochondrial capacity predicts weight loss success and (2) weight loss ameliorates obesity-related SAT mitochondrial abnormalities.Methods:SAT biopsies were obtained from 19 clinically healthy obese subjects (body mass index (BMI) 34.6±2.7 kg m–2) during a weight loss intervention (0, 5 and 12 months) and from 19 lean reference subjects (BMI 22.7±1.1 kg m–2) at baseline. Based on 1-year weight loss outcome, the subjects were divided into two groups: continuous weight losers (WL, n=6) and weight regainers (WR, n=13). Main outcome measures included SAT mitochondrial pathways from transcriptomics, mitochondrial amount (mitochondrial DNA (mtDNA), Porin protein levels), mtDNA-encoded transcripts, oxidative phosphorylation (OXPHOS) proteins, and plasma metabolites of the mitochondrial branched-chain amino-acid catabolism (BCAA) pathway. SAT and visceral adipose tissue (VAT) glucose uptake was measured with positron emission tomography.Results:Despite similar baseline clinical characteristics, SAT in the WL group exhibited higher gene expression level of nuclear-encoded mitochondrial pathways (P=0.0224 OXPHOS, P=0.0086 tricarboxylic acid cycle, P=0.0074 fatty acid beta-oxidation and P=0.0122 BCAA), mtDNA transcript COX1 (P=0.0229) and protein level of Porin (P=0.0462) than the WR group. Many baseline mitochondrial parameters correlated with WL success, and with SAT and VAT glucose uptake. During WL, the nuclear-encoded mitochondrial pathways were downregulated, together with increased plasma metabolite levels of BCAAs in both groups. MtDNA copy number increased in the WR group at 5 months (P=0.012), but decreased to baseline level between 5 and 12 months (P=0.015). The only significant change in the WL group for mtDNA was a reduction between 5 and 12 months (P=0.004). The levels of Porin did not change in either group upon WL.Conclusions:Higher mitochondrial capacity in SAT predicts good long-term WL success. WL does not ameliorate SAT mitochondrial downregulation and based on pathway expression, may paradoxically further reduce it.Data availability:The transcriptomics data generated in this study have been deposited to the Gene Expression Omnibus public repository, accession number GSE103769.


International Journal of Obesity | 2018

Subcutaneous adipose tissue gene expression and DNA methylation respond to both short- and long-term weight loss

S Bollepalli; Sanna M. Kaye; Sini Heinonen; Jaakko Kaprio; Aila Rissanen; K A Virtanen; Kirsi H. Pietiläinen; Miina Ollikainen

Background:Few studies have examined both gene expression and DNA methylation profiles in subcutaneous adipose tissue (SAT) during long-term weight loss. Thus, molecular mechanisms in weight loss and regain remain elusive.Participants/Methods:We performed a 1-year weight loss intervention on 19 healthy obese participants (mean body mass index (BMI) 34.6 kg m−2) and studied longitudinal gene expression (Affymetrix Human Genome U133 Plus 2.0) and DNA methylation (Infinium HumanMethylation450 BeadChip) in SAT at 0, 5 and 12 months. To examine whether weight loss and acquired obesity produce reciprocal profiles, we verified our findings in 26 BMI-discordant monozygotic twin pairs.Results:We found altered expression of 69 genes from 0 to 5’ months (short-term) weight loss. Sixty of these genes showed reversed expression in acquired obesity (twins). Altogether 21/69 genes showed significant expression–DNA methylation correlations. Pathway analyses revealed increased high-density lipoprotein-mediated lipid transport characteristic to short-term weight loss. After the fifth month, two groups of participants evolved: weight losers (WLs) and weight regainers (WRs). In WLs five genes were differentially expressed in 5 vs 12 months, three of which significantly correlated with methylation. Signaling by insulin receptor pathway showed increased expression. We further identified 35 genes with differential expression in WLs from 0 to 12 months (long-term) weight loss, with 20 showing opposite expression patterns in acquired obesity, and 16/35 genes with significant expression–DNA methylation correlations. Pathway analyses demonstrated changes in signal transduction, metabolism, immune system and cell cycle. Notably, seven genes (UCHL1, BAG3, TNMD, LEP, BHMT2, EPDR1 and OSTM1) were found to be downregulated during both short- and long-term weight loss.Conclusions:Our study indicates short- and long-term weight loss influences in transcription and DNA methylation in SAT of healthy participants. Moreover, we demonstrate that same genes react in an opposite manner in weight loss and acquired obesity.

Collaboration


Dive into the Sini Heinonen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirsi H. Pietiläinen

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesper Lundbom

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

J. Lundbom

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge