Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sinisa Dovat is active.

Publication


Featured researches published by Sinisa Dovat.


Journal of Immunology | 2009

IL-7 Dependence in human B lymphopoiesis increases during progression of ontogeny from cord blood to bone marrow.

Yasmin Khan Parrish; Ineavely Baez; Terry-Ann Milford; Abigail Benitez; Nicholas R. Galloway; Jaqueline Willeman Rogerio; Eva Sahakian; Mercy Kagoda; Grace Huang; Qian-Lin Hao; Yazmar Sevilla; Lora Barsky; Ewa Zielinska; Mary Price; Nathan R. Wall; Sinisa Dovat; Kimberly J. Payne

IL-7 is critical for B cell production in adult mice; however, its role in human B lymphopoiesis is controversial. One challenge was the inability to differentiate human cord blood (CB) or adult bone marrow (BM) hematopoietic stem cells (HSCs) without murine stroma. Here, we examine the role of IL-7 in human B cell development using a novel, human-only model based on coculturing human HSCs on primary human BM stroma. In this model, IL-7 increases human B cell production by >60-fold from both CB and adult BM HSCs. IL-7-induced increases are dose-dependent and specific to CD19+ cells. STAT5 phosphorylation and expression of the Ki-67 proliferation Ag indicate that IL-7 acts directly on CD19+ cells to increase proliferation at the CD34+ and CD34− pro-B cell stages. Without IL-7, HSCs in CB, but not BM, give rise to a small but consistent population of CD19lo B lineage cells that express EBF (early B cell factor) and PAX-5 and respond to subsequent IL-7 stimulation. Flt3 ligand, but not thymic stromal-derived lymhopoietin (TSLP), was required for the IL-7-independent production of human B lineage cells. As compared with CB, adult BM shows a reduction of in vitro generative capacity that is progressively more profound in developmentally sequential populations, resulting in an ∼50-fold reduction in IL-7-dependent B lineage generative capacity. These data provide evidence that IL-7 is essential for human B cell production from adult BM and that IL-7-induced expansion of the pro-B compartment is increasingly critical for human B cell production during the progression of ontogeny.


Journal of Biological Chemistry | 2009

Ikaros Stability and Pericentromeric Localization Are Regulated by Protein Phosphatase 1

Marcela Popescu; Zafer Gurel; Tapani Ronni; Chunhua Song; Ka Ying Hung; Kimberly J. Payne; Sinisa Dovat

Ikaros encodes a zinc finger protein that is involved in gene regulation and chromatin remodeling. The majority of Ikaros localizes at pericentromeric heterochromatin (PC-HC) where it regulates expression of target genes. Ikaros function is controlled by posttranslational modification. Phosphorylation of Ikaros by CK2 kinase determines its ability to bind DNA and exert cell cycle control as well as its subcellular localization. We report that Ikaros interacts with protein phosphatase 1 (PP1) via a conserved PP1 binding motif, RVXF, in the C-terminal end of the Ikaros protein. Point mutations of the RVXF motif abolish Ikaros-PP1 interaction and result in decreased DNA binding, an inability to localize to PC-HC, and rapid degradation of the Ikaros protein. The introduction of alanine mutations at CK2-phosphorylated residues increases the half-life of the PP1-nonbinding Ikaros mutant. This suggests that dephosphorylation of these sites by PP1 stabilizes the Ikaros protein and prevents its degradation. In the nucleus, Ikaros forms complexes with ubiquitin, providing evidence that Ikaros degradation involves the ubiquitin/proteasome pathway. In vivo, Ikaros can target PP1 to the nucleus, and a fraction of PP1 colocalizes with Ikaros at PC-HC. These data suggest a novel function for the Ikaros protein; that is, the targeting of PP1 to PC-HC and other chromatin structures. We propose a model whereby the function of Ikaros is controlled by the CK2 and PP1 pathways and that a balance between these two signal transduction pathways is essential for normal cellular function and for the prevention of malignant transformation.


Genome Research | 2009

Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing

Jung-Hyun Kim; Thomas Ebersole; Natalay Kouprina; Vladimir N. Noskov; Jun-ichirou Ohzeki; Hiroshi Masumoto; Brankica Mravinac; Beth A. Sullivan; Adam Pavlicek; Sinisa Dovat; Svetlana Pack; Yoo-Wook Kwon; Patrick T. Flanagan; Dmitri Loukinov; Victor Lobanenkov; Vladimir Larionov

The role of repetitive DNA sequences in pericentromeric regions with respect to kinetochore/heterochromatin structure and function is poorly understood. Here, we use a mouse erythroleukemia cell (MEL) system for studying how repetitive DNA assumes or is assembled into different chromatin structures. We show that human gamma-satellite DNA arrays allow a transcriptionally permissive chromatin conformation in an adjacent transgene and efficiently protect it from epigenetic silencing. These arrays contain CTCF and Ikaros binding sites. In MEL cells, this gamma-satellite DNA activity depends on binding of Ikaros proteins involved in differentiation along the hematopoietic pathway. Given our discovery of gamma-satellite DNA in pericentromeric regions of most human chromosomes and a dynamic chromatin state of gamma-satellite arrays in their natural location, we suggest that gamma-satellite DNA represents a unique region of the functional centromere with a possible role in preventing heterochromatin spreading beyond the pericentromeric region.


Journal of Biological Chemistry | 2008

Recruitment of Ikaros to Pericentromeric Heterochromatin Is Regulated by Phosphorylation

Zafer Gurel; Tapani Ronni; Sam Ho; Jason Kuchar; Kimberly J. Payne; Christoph W. Turk; Sinisa Dovat

Ikaros encodes a zinc finger protein that is involved in heritable gene silencing. In hematopoietic cells, Ikaros localizes to pericentromeric heterochromatin (PC-HC) where it recruits its target genes, resulting in their activation or repression via chromatin remodeling. The function of Ikaros is controlled by post-translational modifications. CK2 kinase has been shown to phosphorylate Ikaros at its C terminus, affecting cell cycle progression. Using in vivo labeling of murine thymocytes followed by phosphopeptide mapping, we identified four novel Ikaros phosphorylation sites. Functional analysis of phosphomimetic mutants showed that the phosphorylation of individual amino acids determines the affinity of Ikaros toward probes derived from PC-HC. In vivo experiments demonstrated that targeting of Ikaros to PC-HC is regulated by phosphorylation. The ability of Ikaros to bind the upstream regulatory elements of its known target gene terminal deoxynucleotidyltransferase (TdT) was decreased by phosphorylation of two amino acids. In thymocytes, Ikaros acts as a repressor of the TdT gene. Induction of differentiation of thymocytes with phorbol 12-myristate 13-acetate plus ionomycin results in transcriptional repression of TdT expression. This process has been associated with increased binding of Ikaros to the upstream regulatory element of TdT. Phosphopeptide analysis of in vivo-labeled thymocytes revealed that Ikaros undergoes dephosphorylation during induction of thymocyte differentiation and that dephosphorylation is responsible for increased DNA binding affinity of Ikaros toward the TdT promoter. We propose a model whereby reversible phosphorylation of Ikaros at specific amino acids controls the subcellular localization of Ikaros as well as its ability to regulate TdT expression during thymocyte differentiation.


Journal of Biological Chemistry | 2007

Human Ikaros Function in Activated T Cells Is Regulated by Coordinated Expression of Its Largest Isoforms

Tapani Ronni; Kimberly J. Payne; Sam Ho; Michelle N. Bradley; Glenn Dorsam; Sinisa Dovat

The Ikaros gene is alternately spliced to generate multiple zinc finger proteins involved in gene regulation and chromatin remodeling. Whereas murine studies have provided important information regarding the role of Ikaros in the mouse, little is known of Ikaros function in human. We report functional analyses of the two largest human Ikaros (hIK) isoforms, hIK-VI and hIK-H, in T cells. Abundant expression of hIK-H, the largest described isoform, is restricted to human hematopoietic cells. We find that the DNA binding affinity of hIK-H differs from that of hIK-VI. Co-expression of hIk-H with hIk-VI alters the ability of Ikaros complexes to bind DNA motifs found in pericentromeric heterochromatin (PC-HC). In the nucleus, hIK-VI is localized solely in PC-HC, whereas the hIK-H protein exhibits dual centromeric and non-centromeric localization. Mutational analysis defined the amino acids responsible for the distinct DNA binding ability of hIK-H, as well as the sequence required for the specific subcellular localization of this isoform. In proliferating cells, the binding of hIK-H to the upstream regulatory region of known Ikaros target genes correlates with their positive regulation by Ikaros. Results suggest that expression of hIK-H protein restricts affinity of Ikaros protein complexes toward specific PC-HC repeats. We propose a model, whereby the binding of hIK-H-deficient Ikaros complexes to the regulatory sequence of target genes would recruit these genes to the restrictive pericentromeric compartment, resulting in their repression. The presence of hIK-H in the Ikaros complex would alter its affinity for PC-HC, leading to chromatin remodeling and activation of target genes.


Pediatric Blood & Cancer | 2012

Congenital pancytopenia and absence of B lymphocytes in a neonate with a mutation in the ikaros gene

Frederick D. Goldman; Zafer Gurel; Duha Al-Zubeidi; Ari J. Fried; Michael Icardi; Chunhua Song; Sinisa Dovat

Congenital pancytopenia is a rare and often lethal condition. Current knowledge of lymphoid and hematopoietic development in mice, as well as understanding regulators of human hematopoiesis, have led to the recent discovery of genetic causes of bone marrow failure disorders. However, in the absence of mutations of specific genes or a distinct clinical phenotype, many cases of aplastic anemia are labeled as idiopathic, while congenital immune deficiencies are described as combined immune deficiency.


Molecular and Cellular Biochemistry | 2011

Ikaros, CK2 kinase, and the road to leukemia

Sinisa Dovat; Chunhua Song; Kimberly J. Payne; Zhanjun Li

Ikaros encodes a zinc finger protein that is essential for hematopoiesis and that acts as a tumor suppressor in leukemia. Ikaros function depends on its ability to localize to pericentromeric-heterochromatin (PC-HC). Ikaros protein binds to the upstream regulatory elements of target genes, aids in their recruitment to PC-HC, and regulates their transcription via chromatin remodeling. We identified four novel Ikaros phosphorylation sites that are phosphorylated by CK2 kinase. Using Ikaros phosphomimetic and phosphoresistant mutants of the CK2 phosphorylation sites, we demonstrate that (1) CK2-mediated phosphorylation inhibits Ikaros’ localization to PC-HC; (2) dephosphorylation of Ikaros at CK2 sites increases its binding to the promoter of the terminal deoxynucleotidetransferase (TdT) gene, leading to TdT repression during thymocyte differentiation; and (3) hyperphosphorylation of Ikaros promotes its degradation by the ubiquitin/proteasome pathway. We show that Ikaros is dephosphorylated by Protein Phosphatase 1 (PP1) via interaction at a consensus PP1-binding motif, RVXF. Point mutations that abolish Ikaros-PP1 interaction result in functional changes in DNA-binding affinity and subcellular localization, similar to those observed in hyperphosphorylated Ikaros and/or Ikaros phosphomimetic mutants. Phosphoresistant Ikaros mutations at CK2 sites restored Ikaros’ DNA-binding activity and localization to PC-HC and prevented accelerated Ikaros degradation. These results demonstrate the role of CK2 kinase in lymphocyte differentiation and in regulation of Ikaros’ function, and suggest that CK2 promotes leukemogenesis by inhibiting the tumor suppressor activity of Ikaros. We propose a model whereby a balance between CK2 kinase and PP1 phosphatase is essential for normal lymphocyte differentiation and for the prevention of malignant transformation.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Serine phosphorylation by SYK is critical for nuclear localization and transcription factor function of Ikaros

Fatih M. Uckun; Hong Ma; Jian Zhang; Zahide Ozer; Sinisa Dovat; Cheney Mao; Rita Ishkhanian; Patricia Goodman; Sanjive Qazi

Ikaros is a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis through transcriptional regulation of the earliest stages of lymphocyte ontogeny and differentiation. Functional deficiency of Ikaros has been implicated in the pathogenesis of acute lymphoblastic leukemia, the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros activity is considered of paramount importance, but the operative molecular mechanisms responsible for its regulation remain largely unknown. Here we provide multifaceted genetic and biochemical evidence for a previously unknown function of spleen tyrosine kinase (SYK) as a partner and posttranslational regulator of Ikaros. We demonstrate that SYK phoshorylates Ikaros at unique C-terminal serine phosphorylation sites S358 and S361, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Mechanistically, we establish that SYK-induced Ikaros activation is essential for its nuclear localization and optimal transcription factor function.


Blood | 2015

Targeting casein kinase II restores Ikaros tumor suppressor activity and demonstrates therapeutic efficacy in high-risk leukemia

Chunhua Song; Chandrika Gowda; Xiaokang Pan; Yali Ding; Yongqing Tong; Bi-Hua Tan; Haijun Wang; Sunil Muthusami; Zheng Ge; Mansi Sachdev; Shantu Amin; Dhimant Desai; Krishne Gowda; Raghavendra Gowda; Gavin P. Robertson; Hilde Schjerven; Markus Müschen; Kimberly J. Payne; Sinisa Dovat

Ikaros (IKZF1) is a tumor suppressor that binds DNA and regulates expression of its target genes. The mechanism of Ikaros activity as a tumor suppressor and the regulation of Ikaros function in leukemia are unknown. Here, we demonstrate that Ikaros controls cellular proliferation by repressing expression of genes that promote cell cycle progression and the phosphatidylinositol-3 kinase (PI3K) pathway. We show that Ikaros function is impaired by the pro-oncogenic casein kinase II (CK2), and that CK2 is overexpressed in leukemia. CK2 inhibition restores Ikaros function as transcriptional repressor of cell cycle and PI3K pathway genes, resulting in an antileukemia effect. In high-risk leukemia where one IKZF1 allele has been deleted, CK2 inhibition restores the transcriptional repressor function of the remaining wild-type IKZF1 allele. CK2 inhibition demonstrated a potent therapeutic effect in a panel of patient-derived primary high-risk B-cell acute lymphoblastic leukemia xenografts as indicated by prolonged survival and a reduction of leukemia burden. We demonstrate the efficacy of a novel therapeutic approach for high-risk leukemia: restoration of Ikaros tumor suppressor activity via inhibition of CK2. These results provide a rationale for the use of CK2 inhibitors in clinical trials for high-risk leukemia, including cases with deletion of one IKZF1 allele.


World Journal of Biological Chemistry | 2011

Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1.

Chunhua Song; Zhanjun Li; Amy K Erbe; Aleksandar Savic; Sinisa Dovat

The Ikaros gene encodes a zinc finger, DNA-binding protein that regulates gene transcription and chromatin remodeling. Ikaros is a master regulator of hematopoiesis and an established tumor suppressor. Moderate alteration of Ikaros activity (e.g. haploinsufficiency) appears to be sufficient to promote malignant transformation in human hematopoietic cells. This raises questions about the mechanisms that normally regulate Ikaros function and the potential of these mechanisms to contribute to the development of leukemia. The focus of this review is the regulation of Ikaros function by phosphorylation/dephosphorylation. Site-specific phosphorylation of Ikaros by casein kinase 2 (CK2) controls Ikaros DNA-binding ability and subcellular localization. As a consequence, the ability of Ikaros to regulate cell cycle progression, chromatin remodeling, target gene expression, and thymocyte differentiation are controlled by CK2. In addition, hyperphosphorylation of Ikaros by CK2 leads to decreased Ikaros levels due to ubiquitin-mediated degradation. Dephosphorylation of Ikaros by protein phosphatase 1 (PP1) acts in opposition to CK2 to increase Ikaros stability and restore Ikaros DNA binding ability and pericentromeric localization. Thus, the CK2 and PP1 pathways act in concert to regulate Ikaros activity in hematopoiesis and as a tumor suppressor. This highlights the importance of these signal transduction pathways as potential mediators of leukemogenesis via their role in regulating the activities of Ikaros.

Collaboration


Dive into the Sinisa Dovat's collaboration.

Researchain Logo
Decentralizing Knowledge