Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sinnathamby N. Surendran is active.

Publication


Featured researches published by Sinnathamby N. Surendran.


Bulletin of Entomological Research | 2005

Molecular and biochemical characterization of a sand fly population from Sri Lanka: evidence for insecticide resistance due to altered esterases and insensitive acetylcholinesterase.

Sinnathamby N. Surendran; S. H. P. P. Karunaratne; Z. Adamsn; Janet Hemingway; Nicola J. Hawkes

With an increasing incidence of cutaneous leishmaniasis in Sri Lanka, particularly in northern provinces, insecticide-mediated vector control is under consideration. Optimizing such a strategy requires the characterization of sand fly populations in target areas with regard to species composition and extant resistance, among other parameters. Sand flies were collected by human bait and cattle-baited net traps on Delft Island, used as an illegal transit location by many refugees returning to the north of Sri Lanka from southern India where leishmaniasis is endemic. For species identification, genomic DNA was extracted and a fragment of the ribosomal 18S gene amplified. The sequence from all flies analysed matched that of Phlebotomus argentipes Annandale & Brunetti, the primary vector in India and the most likely vector in Sri Lanka. Independent morphological analysis also identified P. argentipes. To establish the current susceptibility status of vector species, data were obtained at the biochemical level, from which potential cross-resistance to alternative insecticides can be predicted. The Delft Island collection was assayed for the activities of four enzyme systems involved in insecticide resistance (acetylcholinesterase, non-specific carboxylesterases, glutathione-S-transferases and cytochrome p450 monooxygenases), establishing baselines against which subsequent collections can be evaluated. There was preliminary evidence for elevated esterases and altered acetylcholinesterase in this population, the first report of these resistance mechanisms in sand flies to our knowledge, which probably arose from the malathion-based spraying regimes of the Anti-Malarial Campaign.


PLOS Neglected Tropical Diseases | 2011

Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases.

Ranjan Ramasamy; Sinnathamby N. Surendran; Pavilupillai J. Jude; Sangaralingam Dharshini; Muthuladchumy Vinobaba

Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5–30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats.


BMC Infectious Diseases | 2011

Possible impact of rising sea levels on vector-borne infectious diseases

Ranjan Ramasamy; Sinnathamby N. Surendran

BackgroundVector-borne infectious diseases are a significant cause of human and animal mortality and morbidity. Modeling studies predict that changes in climate that accompany global warming will alter the transmission risk of many vector-borne infectious diseases in different parts of the world. Global warming will also raise sea levels, which will lead to an increase in saline and brackish water bodies in coastal areas. The potential impact of rising sea levels, as opposed to climate change, on the prevalence of vector-borne infectious diseases has hitherto been unrecognised.Presentation of the hypothesisMosquito species possessing salinity-tolerant larvae and pupae, and capable of transmitting arboviruses and parasites are found in many parts of the world. An expansion of brackish and saline water bodies in coastal areas, associated with rising sea levels, can increase densities of salinity-tolerant vector mosquitoes and lead to the adaptation of freshwater vectors to breed in brackish and saline waters. The breeding of non-mosquito vectors may also be influenced by salinity changes in coastal habitats. Higher vector densities can increase transmission of vector-borne infectious diseases in coastal localities, which can then spread to other areas.Testing the hypothesisThe demonstration of increases in vector populations and disease prevalence that is related to an expansion of brackish/saline water bodies in coastal areas will provide the necessary supportive evidence. However the implementation of specific vector and disease control measures to counter the threat will confound the expected findings.Implications of the hypothesisRising sea levels can act synergistically with climate change and then interact in a complex manner with other environmental and socio-economic factors to generate a greater potential for the transmission of vector-borne infectious diseases. The resulting health impacts are likely to be particularly significant in resource-poor countries in the tropics and semi-tropics. Some measures to meet this threat are outlined.


Malaria Journal | 2010

Anopheles culicifacies breeding in brackish waters in Sri Lanka and implications for malaria control

Pavilupillai J. Jude; Sangaralingam Dharshini; Muthuladchumy Vinobaba; Sinnathamby N. Surendran; Ranjan Ramasamy

BackgroundAnopheles culicifacies is the major vector of both falciparum and vivax malaria in Sri Lanka, while Anopheles subpictus and certain other species function as secondary vectors. In Sri Lanka, An. culicifacies is present as a species complex consisting of species B and E, while An. subpictus exists as a complex of species A-D. The freshwater breeding habit of An. culicifacies is well established. In order to further characterize the breeding sites of the major malaria vectors in Sri Lanka, a limited larval survey was carried out at a site in the Eastern province that was affected by the 2004 Asian tsunami.MethodsAnopheline larvae were collected fortnightly for six months from a brackish water body near Batticaloa town using dippers. Collected larvae were reared in the laboratory and the emerged adults were identified using standard keys. Sibling species status was established based on Y-chromosome morphology for An. culicifacies larvae and morphometric characteristics for An. subpictus larvae and adults. Salinity, dissolved oxygen and pH were determined at the larval collection site.ResultsDuring a six month study covering dry and wet seasons, a total of 935 anopheline larvae were collected from this site that had salinity levels up to 4 parts per thousand at different times. Among the emerged adult mosquitoes, 661 were identified as An. culicifacies s.l. and 58 as An. subpictus s.l. Metaphase karyotyping of male larvae showed the presence of species E of the Culicifacies complex, and adult morphometric analysis the presence of species B of the Subpictus complex. Both species were able to breed in water with salinity levels up to 4 ppt.ConclusionsThe study demonstrates the ability of An. culicifacies species E, the major vector of falciparum and vivax malaria in Sri Lanka, to oviposit and breed in brackish water. The sibling species B in the An. subpictus complex, a well-known salt water breeder and a secondary malaria vector in the country, was also detected at the same site. Since global warming and the rise in sea levels will further increase of inland brackish water bodies, the findings have significant implications for the control of malaria in Sri Lanka and elsewhere.


Malaria Journal | 2010

Genetic evidence for malaria vectors of the Anopheles sundaicus complex in Sri Lanka with morphological characteristics attributed to Anopheles subpictus species B

Sinnathamby N. Surendran; O. P. Singh; Pavillupillai J. Jude; Ranjan Ramasamy

BackgroundAnopheles subpictus sensu lato, a widespread malaria vector in Asia, is reportedly composed of four sibling species A - D. Mosquitoes morphologically identified as belonging to the Subpictus complex were collected from different locations near the east coast of Sri Lanka, and specific ribosomal DNA sequences determined to validate their taxonomic status.MethodsAnopheles subpictus s.l. larvae and blood-fed adults were collected from different locations in the Eastern province and their sibling species status was determined based on published morphological characteristics. DNA sequences of the D3 domain of 28 S ribosomal DNA (rDNA) and the internal transcribed spacer -2 (ITS-2) of mosquitoes morphologically identified as An. subpictus sibling species A, B, C and D were determined.ResultsPhylogenetic analysis based on D3 domain of rDNA resulted in two clades: one clade with mosquitoes identified as An. subpictus species A, C, D and some mosquitoes identified as species B, and another clade with a majority of mosquitoes identified as species B with D3 sequences that were identical to Anopheles sundaicus cytotype D. Analysis of ITS-2 sequences confirmed a close relationship between a majority of mosquitoes identified as An. subpictus B with members of the An. sundaicus complex and others identified as An. subpictus B with An. subpictus s.l.ConclusionsThe study suggests that published morphological characteristics are not specific enough to identify some members of the Subpictus complex, particularly species B. The sequences of the ITS-2 and D3 domain of rDNA suggest that a majority that were identified morphologically as An. subpictus species B in the east coast of Sri Lanka, and some identified elsewhere in SE Asia as An. subpictus s.l., are in fact members of the Sundaicus complex based on genetic similarity to An. sundaicus s.l. In view of the well-known ability of An. sundaicus s.l. to breed in brackish and fresh water and its proven ability to transmit malaria in coastal areas of many Southeast Asian countries, the present findings have significant implications for malaria control in Sri Lanka and neighbouring countries.


Parasites & Vectors | 2012

Salinity-tolerant larvae of mosquito vectors in the tropical coast of Jaffna, Sri Lanka and the effect of salinity on the toxicity of Bacillus thuringiensis to Aedes aegypti larvae

Pavilupillai J. Jude; Tharmatha Tharmasegaram; Gobika Sivasubramaniyam; Meena Senthilnanthanan; Selvam Kannathasan; Selvarajah Raveendran; Ranjan Ramasamy; Sinnathamby N. Surendran

BackgroundDengue, chikungunya, malaria, filariasis and Japanese encephalitis are common mosquito-borne diseases endemic to Sri Lanka. Aedes aegypti and Aedes albopictus, the major vectors of dengue, were recently shown to undergo pre-imaginal development in brackish water bodies in the island. A limited survey of selected coastal localities of the Jaffna district in northern Sri Lanka was carried out to identify mosquito species undergoing pre-imaginal development in brackish and saline waters. The effect of salinity on the toxicity of Bacillus thuringiensis israelensis larvicide to Ae. aegypti larvae at salinity levels naturally tolerated by Ae. aegypti was examined.MethodsLarvae collected at the selected sites along the Jaffna coast were identified and salinity of habitat water determined in the laboratory. The LC50 and LC90 of B. thuringiensis toxin, the active ingredient of a commercial formulation of the larvicide BACTIVEC®, were determined with Ae. aegypti larvae. Bioassays were also carried out at salinities varying from 0 to18 ppt to determine the toxicity of Bacillus thuringiensis to fresh and brackish water-derived larvae of Ae. aegypti.ResultsLarvae of four Anopheles, two Aedes, one Culex and one Lutzia species were collected from brackish and saline sites with salinity in the range 2 to 68 ppt. The LC50 and LC90 of B. thuringiensis toxin for the second instar larvae of Ae. aegypti in fresh water were 0.006 ppm and 0.013 ppm respectively, with corresponding values for brackish water populations of 0.008 and 0.012 ppm respectively. One hundred percent survival of second instar fresh water and brackish water-derived Ae. aegypti larvae was recorded at salinity up to 10 and 12 ppt and 100% mortality at 16 and 18 ppt, yielding an LC 50 for salinity of 13.9 ppt and 15.4 ppt at 24 h post-treatment respectively for the two populations. Statistical analysis showed significantly reduced toxicity of B. thuringiensis to fresh and brackish water-derived Ae. aegypti larvae at high salinities.ConclusionA variety of mosquito vectors of human diseases undergo pre-imaginal development in brackish or saline waters in coastal areas of the Jaffna district in northern Sri Lanka. Salinity has a small but significant negative impact on the toxicity of B. thuringiensis toxin to Ae. aegypti larvae at salinity levels where Ae. aegypti larvae are found in the environment. This has implications for the use of B. thuringiensis toxin as a larvicide in brackish waters.


Malaria Journal | 2013

Molecular characterization and identification of members of the Anopheles subpictus complex in Sri Lanka

Sinnathamby N. Surendran; Devojit K. Sarma; Pavilupillai J. Jude; Petri Kemppainen; Nadarajah Kanthakumaran; Kanapathy Gajapathy; Lalanthika B. S. Peiris; Ranjan Ramasamy; Catherine Walton

BackgroundAnopheles subpictus sensu lato is a major malaria vector in South and Southeast Asia. Based initially on polytene chromosome inversion polymorphism, and subsequently on morphological characterization, four sibling species A-D were reported from India. The present study uses molecular methods to further characterize and identify sibling species in Sri Lanka.MethodsMosquitoes from Sri Lanka were morphologically identified to species and sequenced for the ribosomal internal transcribed spacer-2 (ITS2) and the mitochondrial cytochrome c oxidase subunit-I (COI) genes. These sequences, together with others from GenBank, were used to construct phylogenetic trees and parsimony haplotype networks and to test for genetic population structure.ResultsBoth ITS2 and COI sequences revealed two divergent clades indicating that the Subpictus complex in Sri Lanka is composed of two genetically distinct species that correspond to species A and species B from India. Phylogenetic analysis showed that species A and species B do not form a monophyletic clade but instead share genetic similarity with Anopheles vagus and Anopheles sundaicus s.l., respectively. An allele specific identification method based on ITS2 variation was developed for the reliable identification of species A and B in Sri Lanka.ConclusionFurther multidisciplinary studies are needed to establish the species status of all chromosomal forms in the Subpictus complex. This study emphasizes the difficulties in using morphological characters for species identification in An. subpictus s.l. in Sri Lanka and demonstrates the utility of an allele specific identification method that can be used to characterize the differential bio-ecological traits of species A and B in Sri Lanka.


BMC Biology | 2017

Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector

Jacob E. Crawford; Joel M. Alves; William J. Palmer; Jonathan P. Day; Massamba Sylla; Ranjan Ramasamy; Sinnathamby N. Surendran; William C. Black; Arnab Pain; Francis M. Jiggins

BackgroundThe mosquito Aedes aegypti is the main vector of dengue, Zika, chikungunya and yellow fever viruses. This major disease vector is thought to have arisen when the African subspecies Ae. aegypti formosus evolved from being zoophilic and living in forest habitats into a form that specialises on humans and resides near human population centres. The resulting domestic subspecies, Ae. aegypti aegypti, is found throughout the tropics and largely blood-feeds on humans.ResultsTo understand this transition, we have sequenced the exomes of mosquitoes collected from five populations from around the world. We found that Ae. aegypti specimens from an urban population in Senegal in West Africa were more closely related to populations in Mexico and Sri Lanka than they were to a nearby forest population. We estimate that the populations in Senegal and Mexico split just a few hundred years ago, and we found no evidence of Ae. aegypti aegypti mosquitoes migrating back to Africa from elsewhere in the tropics. The out-of-Africa migration was accompanied by a dramatic reduction in effective population size, resulting in a loss of genetic diversity and rare genetic variants.ConclusionsWe conclude that a domestic population of Ae. aegypti in Senegal and domestic populations on other continents are more closely related to each other than to other African populations. This suggests that an ancestral population of Ae. aegypti evolved to become a human specialist in Africa, giving rise to the subspecies Ae. aegypti aegypti. The descendants of this population are still found in West Africa today, and the rest of the world was colonised when mosquitoes from this population migrated out of Africa. This is the first report of an African population of Ae. aegypti aegypti mosquitoes that is closely related to Asian and American populations. As the two subspecies differ in their ability to vector disease, their existence side by side in West Africa may have important implications for disease transmission.


Parasites & Vectors | 2012

Variations in susceptibility to common insecticides and resistance mechanisms among morphologically identified sibling species of the malaria vector Anopheles subpictus in Sri Lanka

Sinnathamby N. Surendran; Pavilupillai J. Jude; Thilini C Weerarathne; S. H. P. P. Karunaratne; Ranjan Ramasamy

BackgroundAnopheles subpictus s.l., an important malaria vector in Sri Lanka, is a complex of four morphologically identified sibling species A-D. Species A-D reportedly differ in bio-ecological traits that are important for vector control. We investigated possible variations that had not been reported previously, in the susceptibility to common insecticides and resistance mechanisms among the An. subpictus sibling species.MethodsAdult An. subpictus were collected from localities in four administrative districts in the dry zone of Sri Lanka. Single female isoprogeny lines were established and sibling species status determined according to reported egg morphology. World Health Organizations standard protocols were used for insecticide bioassays and biochemical assays to determine insecticide susceptibility and resistance mechanisms. Susceptibility of mosquitoes was tested against DDT (5%), malathion (4%), deltamethrin (0.05%) and λ-cyhalothrin (0.05%). Biochemical basis for resistance was determined through assaying for esterase, glutathione-S-transferase and monooxygenase activities and the insensitivity of acetycholinesterase (AChE) to propoxur inhibition.ResultsAll sibling species were highly resistant to DDT. However there were significant differences among the sibling species in their susceptibility to the other tested insecticides. Few species A could be collected for testing, and where testing was possible, species A tended to behave more similarly to species C and D than to B. Species B was more susceptible to all the tested insecticides than the other sibling species. This difference may be attributed to the predominance of species B in coastal areas where selection pressure due to indoor residual spraying of insecticides (IRS) was lower. However there were significant differences between the more inland species C and D mainly towards pyrethroids. Higher GST activities in species C and D might have contributed to their greater DDT resistance than species B. Malathion resistance in both species C and D may be caused by elevated GST activity and an altered insensitive target site in AChE. In addition, a carboxylesterase based malathion resistance mechanisms was also detected in species C and D. Elevated esterase levels in species C and D might have contributed to the low levels of pyrethroid resistance. However an absence of elevated activity of monooxygenases in species B, C and D indicates that monooxygenases are unlikely to be the cause of this partial resistance to pyrethroids.ConclusionsThe differences in insecticide susceptibility and insecticide resistance mechanism shown by An. subpictus sibling species are important considerations for developing the malaria control and eradication program in Sri Lanka. Similar studies on species complexes of other anopheline vectors of malaria are necessary for effective malaria control worldwide. The differential susceptibility findings are also consistent with most, if not all, morphologically identified An. subpictus species B in Sri Lanka belonging to the An. sundaicus complex. There is a need therefore to develop molecular techniques that can be used to differentiate morphologically similar anopheline species in field conditions for more effective vector control.


Parasites & Vectors | 2013

Molecular identification of potential leishmaniasis vector species within the Phlebotomus (Euphlebotomus) argentipes species complex in Sri Lanka

Kanapathy Gajapathy; Lalanthika B. S. Peiris; Sara L. Goodacre; Anjana Silva; Pavilupillai J. Jude; Sinnathamby N. Surendran

BackgroundLeishmaniasis is an emerging vector-borne disease in Sri Lanka. Phlebotomus (Euphlebotomus) argentipes sensu lato Annandale and Brunette 1908 is suspected to be a potential vector. Three sibling species have been reported in the species complex based on analysis of morphological data. A study was carried out in different parts of Sri Lanka including cutaneous leishmaniasis prevailing localities to characterise the sibling species of Phlebotomus (Euphlebotomus) argentipes sensu lato and to establish their possible role in Leishmania transmission.MethodsSandflies were collected using cattle baited trap nets and mouth aspirator. They were identified based on existing taxonomic keys. Sequences of amplified cytochrome oxidase subunit I (CO I), cytochrome oxidase b (cyt b), internal transcribed spacer 2 (ITS2), 18s and 28s rDNA regions were analysed to confirm the number of sibling species. Vectorial capacity of the sibling species was checked by detecting human and Leishmania DNA.ResultsSandflies collected using different techniques were processed for identification, parasite detection and molecular characterization. The 18s, 28s rDNA and cytochrome oxidase subunit I (CO I), internal transcribed spacer 2 (ITS2) and cytochrome b oxidase (cytb) sequences confirmed that the species belonged to the Argentipes complex. 18s and 28s sequences did not show any variation among the proposed sibling species. The phylogeny created from mitochondrial CO I and cytochrome b data and from the nuclear ITS2 region supports the existence of only two groups of flies (termed A and B) from Phlebotomus (Euphlebotomus) argentipes complex instead of the previously proposed three. The Leishmania mini-circle kinetoplastid, heat shock protein 70 (hsp70) and internal transcribed spacer I DNA along with human blood were detected from sibling species A only, which has not previously been considered to be a vector.ConclusionsThe taxonomy of the Sri Lankan Argentipes species complex is reassessed based on the molecular data. The existence of two sibling species is proposed; sibling species A has a long sensilla chaetica (> 50% length of the second antennal flagellomere) and sibling species B has a short sensilla cheatica (< 50%). Sibling species A is incriminated as a vector for leishmaniasis in Sri Lanka.

Collaboration


Dive into the Sinnathamby N. Surendran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sumiko Anno

Shibaura Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiji Imaoka

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Takeo Tadono

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge