Siok-Keen Tey
QIMR Berghofer Medical Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siok-Keen Tey.
The New England Journal of Medicine | 2011
Antonio Di Stasi; Siok-Keen Tey; Gianpietro Dotti; Yuriko Fujita; Alana A. Kennedy-Nasser; Caridad Martinez; Karin Straathof; Enli Liu; April G. Durett; Bambi Grilley; Hao Liu; Conrad Russell Y. Cruz; Barbara Savoldo; Adrian P. Gee; Robert A. Krance; Helen E. Heslop; David M. Spencer; Cliona M. Rooney; Malcolm K. Brenner
BACKGROUND Cellular therapies could play a role in cancer treatment and regenerative medicine if it were possible to quickly eliminate the infused cells in case of adverse events. We devised an inducible T-cell safety switch that is based on the fusion of human caspase 9 to a modified human FK-binding protein, allowing conditional dimerization. When exposed to a synthetic dimerizing drug, the inducible caspase 9 (iCasp9) becomes activated and leads to the rapid death of cells expressing this construct. METHODS We tested the activity of our safety switch by introducing the gene into donor T cells given to enhance immune reconstitution in recipients of haploidentical stem-cell transplants. Patients received AP1903, an otherwise bioinert small-molecule dimerizing drug, if graft-versus-host disease (GVHD) developed. We measured the effects of AP1903 on GVHD and on the function and persistence of the cells containing the iCasp9 safety switch. RESULTS Five patients between the ages of 3 and 17 years who had undergone stem-cell transplantation for relapsed acute leukemia were treated with the genetically modified T cells. The cells were detected in peripheral blood from all five patients and increased in number over time, despite their constitutive transgene expression. A single dose of dimerizing drug, given to four patients in whom GVHD developed, eliminated more than 90% of the modified T cells within 30 minutes after administration and ended the GVHD without recurrence. CONCLUSIONS The iCasp9 cell-suicide system may increase the safety of cellular therapies and expand their clinical applications. (Funded by the National Heart, Lung, and Blood Institute and the National Cancer Institute; ClinicalTrials.gov number, NCT00710892.).
British Journal of Haematology | 2002
Glen A. Kennedy; Siok-Keen Tey; Ralph Cobcroft; Paula Marlton; Gavin Cull; Karen Grimmett; D. Thomson; Devinder Gill
Summary. Re‐treatment with rituximab for B‐cell non‐Hodgkins lymphoma (NHL) relapsing after previous rituximab therapy has recently been shown to be clinically efficacious. Although the mechanism of resistance to rituximab re‐treatment in non‐responding patients is unknown, it is possible that loss of CD20 expression in the relapsed NHL could be important in some patients. We examined the incidence and nature of CD20 negative relapses following rituximab therapy in aggressive B‐cell NHL treated at our institution. Of a total of 18 patients who received rituximab, 13 have relapsed, with 10 patients subsequently undergoing repeat tissue biopsy. Six of these 10 patients (60%) were shown to have lost CD20 expression by either immunohistochemistry and/or flow cytometry. Furthermore, three of the six patients who relapsed with CD20‐negative NHL also suffered relapses at unusual anatomical sites. We conclude that loss of CD20 expression in aggressive B‐cell NHL relapsing post‐rituximab therapy is common. As such, repeat tissue biopsy should be undertaken to document CD20 expression by both flow cytometry and immunohistochemistry prior to considering repeated courses of rituximab in relapsed aggressive lymphomas.
Blood | 2012
Siok-Keen Tey; Rajiv Khanna
The endogenous presentation of the majority of viral epitopes through MHC class I pathway is strictly dependent on the transporter associated with antigen processing (TAP) complex, which transfers the peptide products of proteasomal degradation into the endoplasmic reticulum. A small number of epitopes can be presented through the TAP-independent pathway, the precise mechanism for which remains largely unresolved. Here we show that TAP-independent presentation can be mediated by autophagy and that this process uses the vacuolar pathway and not the conventional secretory pathway. After macroautophagy, the antigen is processed through a proteasome-independent pathway, and the peptide epitopes are loaded within the autophagolysosomal compartment in a process facilitated by the relative acid stability of the peptide-MHC interaction. Despite bypassing much of the conventional MHC class I pathway, the autophagy-mediated pathway generates the same epitope as that generated through the conventional pathway and thus may have a role in circumventing viral immune evasion strategies that primarily target the conventional pathway.
Journal of Immunology | 2013
Ping Zhang; Siok-Keen Tey; Motoko Koyama; Rachel D. Kuns; Stuart D. Olver; Katie E. Lineburg; Mary Lor; Bianca E. Teal; Neil C. Raffelt; Jyothy Raju; Lucie Leveque; Kate A. Markey; Antiopi Varelias; Andrew D. Clouston; Steven W. Lane; Kelli P. A. MacDonald; Geoffrey R. Hill
Natural regulatory T cells (nTregs) play an important role in tolerance; however, the small numbers of cells obtainable potentially limit the feasibility of clinical adoptive transfer. Therefore, we studied the feasibility and efficacy of using murine-induced regulatory T cells (iTregs) for the induction of tolerance after bone marrow transplantation. iTregs could be induced in large numbers from conventional donor CD4 and CD8 T cells within 1 wk and were highly suppressive. During graft-versus-host disease (GVHD), CD4 and CD8 iTregs suppressed the proliferation of effector T cells and the production of proinflammatory cytokines. However, unlike nTregs, both iTreg populations lost Foxp3 expression within 3 wk in vivo, reverted to effector T cells, and exacerbated GVHD. The loss of Foxp3 in iTregs followed homeostatic and/or alloantigen-driven proliferation and was unrelated to GVHD. However, the concurrent administration of rapamycin, with or without IL-2/anti–IL-2 Ab complexes, to the transplant recipients significantly improved Foxp3 stability in CD4 iTregs (and, to a lesser extent, CD8 iTregs), such that they remained detectable 12 wk after transfer. Strikingly, CD4, but not CD8, iTregs could then suppress Teff proliferation and proinflammatory cytokine production and prevent GVHD in an equivalent fashion to nTregs. However, at high numbers and when used as GVHD prophylaxis, Tregs potently suppress graft-versus-leukemia effects and so may be most appropriate as a therapeutic modality to treat GVHD. These data demonstrate that CD4 iTregs can be produced rapidly in large, clinically relevant numbers and, when transferred in the presence of systemic rapamycin and IL-2, induce tolerance in transplant recipients.
Cancer Research | 2014
Lucas Ferrari de Andrade; Shin Foong Ngiow; Kimberley Stannard; Sylvie Rusakiewicz; Murugan Kalimutho; Kum Kum Khanna; Siok-Keen Tey; Kazuyoshi Takeda; Laurence Zitvogel; Ludovic Martinet; Mark J. Smyth
BRAF(V600E) is a major oncogenic mutation found in approximately 50% of human melanoma that confers constitutive activation of the MAPK pathway and increased melanoma growth. Inhibition of BRAF(V600E) by oncogene targeting therapy increases overall survival of patients with melanoma, but is unable to produce many durable responses. Adaptive drug resistance remains the main limitation to BRAF(V600E) inhibitor clinical efficacy and immune-based strategies could be useful to overcome disease relapse. Tumor microenvironment greatly differs between visceral metastasis and primary cutaneous melanoma, and the mechanisms involved in the antimetastatic efficacy of BRAF(V600E) inhibitors remain to be determined. To address this question, we developed a metastatic BRAF(V600E)-mutant melanoma cell line and demonstrated that the antimetastatic properties of BRAF inhibitor PLX4720 (a research analogue of vemurafenib) require host natural killer (NK) cells and perforin. Indeed, PLX4720 not only directly limited BRAF(V600E)-induced tumor cell proliferation, but also affected NK cell functions. We showed that PLX4720 increases the phosphorylation of ERK1/2, CD69 expression, and proliferation of mouse NK cells in vitro. NK cell frequencies were significantly enhanced by PLX4720 specifically in the lungs of mice with BRAF(V600E) lung metastases. Furthermore, PLX4720 also increased human NK cell pERK1/2, CD69 expression, and IFNγ release in the context of anti-NKp30 and IL2 stimulation. Overall, this study supports the idea that additional NK cell-based immunotherapy (by checkpoint blockade or agonists or cytokines) may combine well with BRAF(V600E) inhibitor therapy to promote more durable responses in melanoma.
Immunology and Cell Biology | 2006
Siok-Keen Tey; Catherine M. Bollard; Helen E. Heslop
Adoptive T‐cell therapy has definite clinical benefit in relapsed leukaemia after allogeneic transplant and in Epstein–Barr virus‐associated post‐transplant lymphoproliferative disease. However, the majority of tumour targets are weakly immunogenic self‐antigens and success has been limited in part by inadequate persistence and expansion of transferred T cells and by tumour‐evasion strategies. Adoptive immunotherapy presents the opportunity to activate, expand and genetically modify T cells outside the tolerising environment of the host and a number of strategies to optimize the cellular product, including gene modification and modulation of the host environment, in particular by lymphodepletion, have been developed.
Clinical And Translational Immunology | 2014
Siok-Keen Tey
The potential of adoptive T‐cell therapy in effecting complete and durable responses has been demonstrated in a number of malignant and infectious diseases. Ongoing progress in T‐cell engineering has given cause for optimism in the broader clinical applicability of this approach. However, the development of more potent T cells is checked by safety concerns, highlighted by the occurrence of on‐target and off‐target toxicities that, although uncommon, have been fatal on occasions. Timely pharmacological intervention is effective in the management of a majority of adverse events but adoptively transferred T cells can persist long term, along with any unwanted effects. A recently validated cellular safety switch, inducible caspase 9 (iCasp9), has the potential to mitigate the risks of T‐cell therapy by enabling the elimination of transferred T cells if required. In haematopoietic stem cell transplantation, iCasp9‐modified donor T cells can be rapidly eliminated in the event of graft‐versus‐host disease. This review presents an overview of the risks associated with modern T‐cell therapy and the development, clinical results and potential future application of the iCasp9 safety switch.
Blood | 2015
Antiopi Varelias; Kate H. Gartlan; Ellen Kreijveld; Stuart D. Olver; Mary Lor; Rachel D. Kuns; Katie E. Lineburg; Bianca E. Teal; Neil C. Raffelt; Melody Cheong; Kylie A. Alexander; Motoko Koyama; Kate A. Markey; Elise Sturgeon; Justine Leach; Pavan Reddy; Glen A. Kennedy; Gregory A. Yanik; Bruce R. Blazar; Siok-Keen Tey; Andrew D. Clouston; Kelli P. A. MacDonald; Kenneth R. Cooke; Geoffrey R. Hill
Idiopathic pneumonia syndrome (IPS) is a relatively common, frequently fatal clinical entity, characterized by noninfectious acute lung inflammation following allogeneic stem cell transplantation (SCT), the mechanisms of which are unclear. In this study, we demonstrate that immune suppression with cyclosporin after SCT limits T-helper cell (Th) 1 differentiation and interferon-γ secretion by donor T cells, which is critical for inhibiting interleukin (IL)-6 generation from lung parenchyma during an alloimmune response. Thereafter, local IL-6 secretion induces donor alloantigen-specific Th17 cells to preferentially expand within the lung, and blockade of IL-17A or transplantation of grafts lacking the IL-17 receptor prevents disease. Studies using IL-6(-/-) recipients or IL-6 blockade demonstrate that IL-6 is the critical driver of donor Th17 differentiation within the lung. Importantly, IL-6 is also dysregulated in patients undergoing clinical SCT and is present at very high levels in the plasma of patients with IPS compared with SCT recipients without complications. Furthermore, at the time of diagnosis, plasma IL-6 levels were higher in a subset of IPS patients who were nonresponsive to steroids and anti-tumor necrosis factor therapy. In sum, pulmonary-derived IL-6 promotes IPS via the induction of Th17 differentiation, and strategies that target these cytokines represent logical therapeutic approaches for IPS.
PLOS ONE | 2013
Siok-Keen Tey; Glen A. Kennedy; Deborah Cromer; Miles P. Davenport; Susan Walker; Linda Jones; Tania Crough; Simon Durrant; J Morton; Jason Butler; Ashish K. Misra; Geoffrey R. Hill; Rajiv Khanna
The reconstitution of anti-viral cellular immunity following hematopoietic stem cell transplantation (HSCT) is crucial in preventing cytomegalovirus (CMV)-associated complications. Thus immunological monitoring has emerged as an important tool to better target pre-emptive anti-viral therapies. However, traditional laboratory-based assays are too cumbersome and complicated to implement in a clinical setting. Here we conducted a prospective study of a new whole blood assay (referred to as QuantiFERON-CMV®) to determine the clinical utility of measuring CMV-specific CD8+ T-cell responses as a prognostic tool. Forty-one evaluable allogeneic HSCT recipients underwent weekly immunological monitoring from day 21 post-transplant and of these 21 (51.2%) showed CMV reactivation and 29 (70.7%) developed acute graft-versus-host disease (GvHD). Patients with acute GvHD (grade≥2) within 6 weeks of transplant showed delayed reconstitution of CMV-specific T-cell immunity (p = 0.013) and a higher risk of CMV viremia (p = 0.026). The median time to stable CMV-specific immune reconstitution was 59 days and the incidence of CMV reactivation was lower in patients who developed this than those who did not (27% versus 65%; p = 0.031). Furthermore, a failure to reconstitute CMV-specific immunity soon after the onset of CMV viraemia was associated with higher peak viral loads (5685 copies/ml versus 875 copies/ml; p = 0.002). Hence, QuantiFERON-CMV® testing in the week following CMV viremia can be useful in identifying HSCT recipients at risk of complicated reactivation.
Journal of Experimental Medicine | 2015
Motoko Koyama; Melody Cheong; Kate A. Markey; Kate H. Gartlan; Rachel D. Kuns; Kelly R. Locke; Katie E. Lineburg; Bianca E. Teal; Lucie Leveque-El Mouttie; Mark D. Bunting; Slavica Vuckovic; Ping Zhang; Michele W.L. Teng; Antiopi Varelias; Siok-Keen Tey; Leesa F. Wockner; Christian R. Engwerda; Mark J. Smyth; Gabrielle T. Belz; Kelli P. A. MacDonald; Geoffrey R. Hill
Koyama et al. show that GVHD markedly enhances alloantigen presentation within the mesenteric lymph nodes, mediated by donor CD103+CD11b− DCs that migrate from the colon under the influence of CCR7. This antigen presentation imprints gut-homing integrin signatures on donor T cells, leading to their migration to the GI tract where they mediate fulminant disease.