Siqi Sun
Toyota Technological Institute at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siqi Sun.
PLOS Computational Biology | 2017
Sheng Wang; Siqi Sun; Zhen Li; Renyu Zhang; Jinbo Xu
Motivation Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. Method This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Results Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then. Availability http://raptorx.uchicago.edu/ContactMap/
Nucleic Acids Research | 2012
Siqi Sun; Xinran Dong; Yao Fu; Weidong Tian
A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity has the advantage of preserving the primary network structure of the undetected modules. Thus, we have developed a simple iterative Network Partition (iNP) algorithm to partition a network. The iNP algorithm provides a general framework in which any modularity-based algorithm can be implemented in the network partition step. Here, we tested iNP with three modularity-based algorithms: multi-step greedy (MSG), spectral clustering and Qcut. Compared with the original three methods, iNP achieved a significant improvement in the quality of network partition in a benchmark study with simulated networks, identified more modules with significantly better enrichment of functionally related genes in both yeast protein complex network and breast cancer gene co-expression network, and discovered more cancer-specific modules in the cancer gene co-expression network. As such, iNP should have a broad application as a general method to assist in the analysis of biological networks.
Proteins | 2018
Sheng Wang; Siqi Sun; Jinbo Xu
Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX‐Contact server, which is an early implementation of our deep learning method for contact prediction. On a set of 38 free‐modeling target domains with a median family size of around 58 effective sequences, our server obtained an average top L/5 long‐ and medium‐range contact accuracy of 47% and 44%, respectively (L = length). A complete implementation has an average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact prediction as a pixel‐level image labeling problem and simultaneously predicts all residue pairs of a protein using a combination of two deep residual neural networks, taking as input the residue conservation information, predicted secondary structure and solvent accessibility, contact potential, and coevolution information. Our approach differs from existing methods mainly in (1) formulating contact prediction as a pixel‐level image labeling problem instead of an image‐level classification problem; (2) simultaneously predicting all contacts of an individual protein to make effective use of contact occurrence patterns; and (3) integrating both one‐dimensional and two‐dimensional deep convolutional neural networks to effectively learn complex sequence‐structure relationship including high‐order residue correlation. This paper discusses the RaptorX‐Contact pipeline, both contact prediction and contact‐based folding results, and finally the strength and weakness of our method.
european conference on machine learning | 2016
Sheng Wang; Siqi Sun; Jinbo Xu
Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC.
bioinformatics and biomedicine | 2015
Siqi Sun; Jianzhu Ma; Sheng Wang; Jinbo Xu
Protein contacts contain important information for protein structure and functional study, but contact prediction from sequence information remains very challenging. Recently evolutionary coupling (EC) analysis, which predicts contacts by detecting co-evolved residues (or columns) in a multiple sequence alignment (MSA), has made good progress due to better statistical assessment techniques and high-throughput sequencing. Existing EC analysis methods predict only a single contact map for a given protein, which may have low accuracy especially when the protein under prediction does not have a large number of sequence homologs. Analogous to ab initio folding that usually predicts a few possible 3D models for a given protein sequence, this paper presents a novel structure learning method that can predict a set of diverse contact maps for a given protein sequence, in which the best solution usually has much better accuracy than the first one. Our experimental tests show that for many test proteins, the best out of 5 solutions generated by our method has accuracy at least 0.1 better than the first one when the top L/5 or L/10 (L is the sequence length) predicted long-range contacts are evaluated, especially for protein families with a small number of sequence homologs. Our best solutions also have better quality than those generated by the two popular EC methods Evfold and PSICOV.
international conference on machine learning | 2015
Qingming Tang; Siqi Sun; Jinbo Xu
european conference on machine learning | 2016
Branislav Kveton; Hung Hai Bui; Mohammad Ghavamzadeh; Georgios Theocharous; S. Muthukrishnan; Siqi Sun
international conference on artificial intelligence and statistics | 2015
Siqi Sun; Hai Wang; Jinbo Xu
international conference on artificial intelligence and statistics | 2014
Siqi Sun; Yuancheng Zhu; Jinbo Xu
arXiv: Machine Learning | 2015
Sheng Wang; Siqi Sun; Jinbo Xu