Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sirarat Sarntivijai is active.

Publication


Featured researches published by Sirarat Sarntivijai.


Journal of Biomedical Semantics | 2014

OAE: The Ontology of Adverse Events

Yongqun He; Sirarat Sarntivijai; Yu Lin; Zuoshuang Xiang; Abra Guo; Shelley Zhang; Desikan Jagannathan; Luca Toldo; Cui Tao; Barry Smith

BackgroundA medical intervention is a medical procedure or application intended to relieve or prevent illness or injury. Examples of medical interventions include vaccination and drug administration. After a medical intervention, adverse events (AEs) may occur which lie outside the intended consequences of the intervention. The representation and analysis of AEs are critical to the improvement of public health.DescriptionThe Ontology of Adverse Events (OAE), previously named Adverse Event Ontology (AEO), is a community-driven ontology developed to standardize and integrate data relating to AEs arising subsequent to medical interventions, as well as to support computer-assisted reasoning. OAE has over 3,000 terms with unique identifiers, including terms imported from existing ontologies and more than 1,800 OAE-specific terms. In OAE, the term ‘adverse event’ denotes a pathological bodily process in a patient that occurs after a medical intervention. Causal adverse events are defined by OAE as those events that are causal consequences of a medical intervention. OAE represents various adverse events based on patient anatomic regions and clinical outcomes, including symptoms, signs, and abnormal processes. OAE has been used in the analysis of several different sorts of vaccine and drug adverse event data. For example, using the data extracted from the Vaccine Adverse Event Reporting System (VAERS), OAE was used to analyse vaccine adverse events associated with the administrations of different types of influenza vaccines. OAE has also been used to represent and classify the vaccine adverse events cited in package inserts of FDA-licensed human vaccines in the USA.ConclusionOAE is a biomedical ontology that logically defines and classifies various adverse events occurring after medical interventions. OAE has successfully been applied in several adverse event studies. The OAE ontological framework provides a platform for systematic representation and analysis of adverse events and of the factors (e.g., vaccinee age) important for determining their clinical outcomes.


Journal of Biomedical Semantics | 2014

CLO: The cell line ontology

Sirarat Sarntivijai; Yu Lin; Zuoshuang Xiang; Terrence F. Meehan; Alexander D. Diehl; Uma D. Vempati; Stephan C. Schürer; Chao Pang; James Malone; Helen Parkinson; Yue Liu; Terue Takatsuki; Kaoru Saijo; Hiroshi Masuya; Yukio Nakamura; Matthew H. Brush; Melissa Haendel; Jie Zheng; Christian J. Stoeckert; Bjoern Peters; Christopher J. Mungall; Thomas E. Carey; David J. States; Brian D. Athey; Yongqun He

BackgroundCell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions.Construction and contentCollaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms.Utility and discussionThe CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development.


Bioinformatics | 2008

A bioinformatics analysis of the cell line nomenclature

Sirarat Sarntivijai; Alexander S. Ade; Brian D. Athey; David J. States

MOTIVATION Cell lines are used extensively in biomedical research, but the nomenclature describing cell lines has not been standardized. The problems are both linguistic and experimental. Many ambiguous cell line names appear in the published literature. Users of the same cell line may refer to it in different ways, and cell lines may mutate or become contaminated without the knowledge of the user. As a first step towards rationalizing this nomenclature, we created a cell line knowledgebase (CLKB) with a well-structured collection of names and descriptive data for cell lines cultured in vitro. The objectives of this work are: (i) to assist users in extracting useful information from biomedical text and (ii) to highlight the importance of standardizing cell line names in biomedical research. This CLKB contains a broad collection of cell line names compiled from ATCC, Hyper CLDB and MeSH. In addition to names, the knowledgebase specifies relationships between cell lines. We analyze the use of cell line names in biomedical text. Issues include ambiguous names, polymorphisms in the use of names and the fact that some cell line names are also common English words. Linguistic patterns associated with the occurrence of cell line names are analyzed. Applying these patterns to find additional cell line names in the literature identifies only a small number of additional names. Annotation of microarray gene expression studies is used as a test case. The CLKB facilitates data exploration and comparison of different cell lines in support of clinical and experimental research. AVAILABILITY The web ontology file for this cell line collection can be downloaded at http://www.stateslab.org/data/celllineOntology/cellline.zip.


PLOS ONE | 2012

Ontology-based combinatorial comparative analysis of adverse events associated with killed and live influenza vaccines.

Sirarat Sarntivijai; Zuoshuang Xiang; Kerby Shedden; Howard Markel; Gilbert S. Omenn; Brian D. Athey; Yongqun He

Vaccine adverse events (VAEs) are adverse bodily changes occurring after vaccination. Understanding the adverse event (AE) profiles is a crucial step to identify serious AEs. Two different types of seasonal influenza vaccines have been used on the market: trivalent (killed) inactivated influenza vaccine (TIV) and trivalent live attenuated influenza vaccine (LAIV). Different adverse event profiles induced by these two groups of seasonal influenza vaccines were studied based on the data drawn from the CDC Vaccine Adverse Event Report System (VAERS). Extracted from VAERS were 37,621 AE reports for four TIVs (Afluria, Fluarix, Fluvirin, and Fluzone) and 3,707 AE reports for the only LAIV (FluMist). The AE report data were analyzed by a novel combinatorial, ontology-based detection of AE method (CODAE). CODAE detects AEs using Proportional Reporting Ratio (PRR), Chi-square significance test, and base level filtration, and groups identified AEs by ontology-based hierarchical classification. In total, 48 TIV-enriched and 68 LAIV-enriched AEs were identified (PRR>2, Chi-square score >4, and the number of cases >0.2% of total reports). These AE terms were classified using the Ontology of Adverse Events (OAE), MedDRA, and SNOMED-CT. The OAE method provided better classification results than the two other methods. Thirteen out of 48 TIV-enriched AEs were related to neurological and muscular processing such as paralysis, movement disorders, and muscular weakness. In contrast, 15 out of 68 LAIV-enriched AEs were associated with inflammatory response and respiratory system disorders. There were evidences of two severe adverse events (Guillain-Barre Syndrome and paralysis) present in TIV. Although these severe adverse events were at low incidence rate, they were found to be more significantly enriched in TIV-vaccinated patients than LAIV-vaccinated patients. Therefore, our novel combinatorial bioinformatics analysis discovered that LAIV had lower chance of inducing these two severe adverse events than TIV. In addition, our meta-analysis found that all previously reported positive correlation between GBS and influenza vaccine immunization were based on trivalent influenza vaccines instead of monovalent influenza vaccines.


Drug Safety | 2016

Linking MedDRA®-Coded Clinical Phenotypes to Biological Mechanisms by the Ontology of Adverse Events: A Pilot Study on Tyrosine Kinase Inhibitors

Sirarat Sarntivijai; Shelley Zhang; Desikan Jagannathan; Shadia Zaman; Keith Burkhart; Gilbert S. Omenn; Yongqun He; Brian D. Athey; Darrell R. Abernethy

AbstractIntroductionA translational bioinformatics challenge exists in connecting population and individual clinical phenotypes in various formats to biological mechanisms. The Medical Dictionary for Regulatory Activities (MedDRA®) is the default dictionary for adverse event (AE) reporting in the US Food and Drug Administration Adverse Event Reporting System (FAERS). The ontology of adverse events (OAE) represents AEs as pathological processes occurring after drug exposures.ObjectivesThe aim of this work was to establish a semantic framework to link biological mechanisms to phenotypes of AEs by combining OAE with MedDRA® in FAERS data analysis. We investigated the AEs associated with tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) targeting tyrosine kinases. The five selected TKIs/mAbs (i.e., dasatinib, imatinib, lapatinib, cetuximab, and trastuzumab) are known to induce impaired ventricular function (non-QT) cardiotoxicity.ResultsStatistical analysis of FAERS data identified 1053 distinct MedDRA® terms significantly associated with TKIs/mAbs, where 884 did not have corresponding OAE terms. We manually annotated these terms, added them to OAE by the standard OAE development strategy, and mapped them to MedDRA®. The data integration to provide insights into molecular mechanisms of drug-associated AEs was performed by including linkages in OAE for all related AE terms to MedDRA® and the existing ontologies, including the human phenotype ontology (HP), Uber anatomy ontology (UBERON), and gene ontology (GO). Sixteen AEs were shared by all five TKIs/mAbs, and each of 17 cardiotoxicity AEs was associated with at least one TKI/mAb. As an example, we analyzed “cardiac failure” using the relations established in OAE with other ontologies and demonstrated that one of the biological processes associated with cardiac failure maps to the genes associated with heart contraction.ConclusionBy expanding the existing OAE ontological design, our TKI use case demonstrated that the combination of OAE and MedDRA® provides a semantic framework to link clinical phenotypes of adverse drug events to biological mechanisms.


eLife | 2017

Building bridges between cellular and molecular structural biology

Ardan Patwardhan; Robert Brandt; Sarah J. Butcher; Lucy M. Collinson; David Gault; Kay Grünewald; Corey W. Hecksel; Juha T. Huiskonen; Andrii Iudin; Martin L. Jones; Paul K. Korir; Abraham J. Koster; Ingvar Lagerstedt; Catherine L. Lawson; David N. Mastronarde; Matthew McCormick; Helen Parkinson; Peter B. Rosenthal; Stephan Saalfeld; Helen R. Saibil; Sirarat Sarntivijai; Irene Solanes Valero; Sriram Subramaniam; Jason R. Swedlow; Ilinca Tudose; Martyn Winn; Gerard J. Kleywegt

The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures. DOI: http://dx.doi.org/10.7554/eLife.25835.001


BMC Bioinformatics | 2017

Ontological representation, integration, and analysis of LINCS cell line cells and their cellular responses.

Edison Ong; Jiangan Xie; Zhaohui Ni; Qingping Liu; Sirarat Sarntivijai; Yu Lin; Daniel J. Cooper; Raymond Terryn; Vasileios Stathias; Caty Chung; Stephan C. Schürer; Yongqun He

BackgroundAiming to understand cellular responses to different perturbations, the NIH Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) program involves many institutes and laboratories working on over a thousand cell lines. The community-based Cell Line Ontology (CLO) is selected as the default ontology for LINCS cell line representation and integration.ResultsCLO has consistently represented all 1097 LINCS cell lines and included information extracted from the LINCS Data Portal and ChEMBL. Using MCF 10A cell line cells as an example, we demonstrated how to ontologically model LINCS cellular signatures such as their non-tumorigenic epithelial cell type, three-dimensional growth, latrunculin-A-induced actin depolymerization and apoptosis, and cell line transfection. A CLO subset view of LINCS cell lines, named LINCS-CLOview, was generated to support systematic LINCS cell line analysis and queries. In summary, LINCS cell lines are currently associated with 43 cell types, 131 tissues and organs, and 121 cancer types. The LINCS-CLO view information can be queried using SPARQL scripts.ConclusionsCLO was used to support ontological representation, integration, and analysis of over a thousand LINCS cell line cells and their cellular responses.


Journal of Biomedical Semantics | 2016

Webulous and the Webulous Google Add-On - a web service and application for ontology building from templates

Simon Jupp; Tony Burdett; Danielle Welter; Sirarat Sarntivijai; Helen Parkinson; James Malone

BackgroundAuthoring bio-ontologies is a task that has traditionally been undertaken by skilled experts trained in understanding complex languages such as the Web Ontology Language (OWL), in tools designed for such experts. As requests for new terms are made, the need for expert ontologists represents a bottleneck in the development process. Furthermore, the ability to rigorously enforce ontology design patterns in large, collaboratively developed ontologies is difficult with existing ontology authoring software.DescriptionWe present Webulous, an application suite for supporting ontology creation by design patterns. Webulous provides infrastructure to specify templates for populating ontology design patterns that get transformed into OWL assertions in a target ontology. Webulous provides programmatic access to the template server and a client application has been developed for Google Sheets that allows templates to be loaded, populated and resubmitted to the Webulous server for processing.ConclusionsThe development and delivery of ontologies to the community requires software support that goes beyond the ontology editor. Building ontologies by design patterns and providing simple mechanisms for the addition of new content helps reduce the overall cost and effort required to develop an ontology. The Webulous system provides support for this process and is used as part of the development of several ontologies at the European Bioinformatics Institute.


BMC Bioinformatics | 2017

Cells in experimental life sciences - challenges and solution to the rapid evolution of knowledge

Sirarat Sarntivijai; Alexander D. Diehl; Yongqun He

Cell cultures used in biomedical experiments come in the form of both sample biopsy primary cells, and maintainable immortalised cell lineages. The rise of bioinformatics and high-throughput technologies has led us to the requirement of ontology representation of cell types and cell lines. The Cell Ontology (CL) and Cell Line Ontology (CLO) have long been established as reference ontologies in the OBO framework. We have compiled a series of the challenges and the proposals of solutions in this CELLS (Cells in ExperimentaL Life Sciences) thematic series that cover the grounds of standing issues and the directions, which were discussed in the First International Workshop on CELLS at the the International Conference on Biomedical Ontology (ICBO). This workshop focused on the extension of the current CL and CLO to cover a wider set of biological questions and challenges needing semantic infrastructure for information modeling. We discussed data-driven use cases that leverage linkage of CL, CLO and other bio-ontologies. This is an established approach in data-driven ontologies such as the Experimental Factor Ontology (EFO), and the Ontology for Biomedical Investigation (OBI). The First International Workshop on CELLS at the International Conference on Biomedical Ontology has brought together experimental biologists and biomedical ontologists to discuss solutions to organizing and representing the rapidly evolving knowledge gained from experimental cells. The workshop has successfully identified the areas of challenge, and the gap in connecting the two domains of knowledge. The outcome of this workshop yielded practical implementation plans to filled in this gap.This CELLS workshop also provided a venue for panel discussions of innovative solutions as well as challenges in the development and applications of biomedical ontologies to represent and analyze experimental cell data.


BMC Bioinformatics | 2017

Usage of cell nomenclature in biomedical literature

Şenay Kafkas; Sirarat Sarntivijai; Robert Hoehndorf

BackgroundCell lines and cell types are extensively studied in biomedical research yielding to a significant amount of publications each year. Identifying cell lines and cell types precisely in publications is crucial for science reproducibility and knowledge integration. There are efforts for standardisation of the cell nomenclature based on ontology development to support FAIR principles of the cell knowledge. However, it is important to analyse the usage of cell nomenclature in publications at a large scale for understanding the level of uptake of cell nomenclature in literature by scientists. In this study, we analyse the usage of cell nomenclature, both in Vivo, and in Vitro in biomedical literature by using text mining methods and present our results.ResultsWe identified 59% of the cell type classes in the Cell Ontology and 13% of the cell line classes in the Cell Line Ontology in the literature. Our analysis showed that cell line nomenclature is much more ambiguous compared to the cell type nomenclature. However, trends indicate that standardised nomenclature for cell lines and cell types are being increasingly used in publications by the scientists.ConclusionsOur findings provide an insight to understand how experimental cells are described in publications and may allow for an improved standardisation of cell type and cell line nomenclature as well as can be utilised to develop efficient text mining applications on cell types and cell lines. All data generated in this study is available at https://github.com/shenay/CellNomenclatureStudy.

Collaboration


Dive into the Sirarat Sarntivijai's collaboration.

Top Co-Authors

Avatar

Yongqun He

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Helen Parkinson

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Jupp

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Alexander D. Diehl

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Terrence F. Meehan

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Malone

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Tony Burdett

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge