Siren Berland
Haukeland University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siren Berland.
Nature Genetics | 2009
Zandra A. Jenkins; Margriet van Kogelenberg; Timothy R. Morgan; Aaron Jeffs; Ryuji Fukuzawa; Esther J. Pearl; Christina Thaller; Anne V. Hing; Mary Porteous; Sixto García-Miñaúr; Axel Bohring; Didier Lacombe; Fiona Stewart; Torunn Fiskerstrand; Laurence A. Bindoff; Siren Berland; Lesley C. Adès; Michel Tchan; Albert David; Louise C. Wilson; Raoul C. M. Hennekam; Dian Donnai; Sahar Mansour; Valérie Cormier-Daire; Stephen P. Robertson
Abnormalities in WNT signaling are implicated in a broad range of developmental anomalies and also in tumorigenesis. Here we demonstrate that germline mutations in WTX (FAM123B), a gene that encodes a repressor of canonical WNT signaling, cause an X-linked sclerosing bone dysplasia, osteopathia striata congenita with cranial sclerosis (OSCS; MIM300373). This condition is typically characterized by increased bone density and craniofacial malformations in females and lethality in males. The mouse homolog of WTX is expressed in the fetal skeleton, and alternative splicing implicates plasma membrane localization of WTX as a factor associated with survival in males with OSCS. WTX has also been shown to be somatically inactivated in 11–29% of cases of Wilms tumor. Despite being germline for such mutations, individuals with OSCS are not predisposed to tumor development. The observed phenotypic discordance dependent upon whether a mutation is germline or occurs somatically suggests the existence of temporal or spatial constraints on the action of WTX during tumorigenesis.
Science | 2011
Patrick Edery; Charles Marcaillou; Mourad Sahbatou; Audrey Labalme; Joelle Chastang; Renaud Touraine; Emmanuel Tubacher; Faiza Senni; Michael B. Bober; Sheela Nampoothiri; Pierre Simon Jouk; Elisabeth Steichen; Siren Berland; Annick Toutain; Carol A. Wise; Damien Sanlaville; Francis Rousseau; Françoise Clerget-Darpoux; Anne Louise Leutenegger
Mutation in a small nuclear RNA hinders splicing of pre–messenger RNAs and causes the severe malformations of Taybi-Linder syndrome. The spliceosome, a ribonucleoprotein complex that includes proteins and small nuclear RNAs (snRNAs), catalyzes RNA splicing through intron excision and exon ligation to produce mature messenger RNAs, which, in turn serve as templates for protein translation. We identified four point mutations in the U4atac snRNA component of the minor spliceosome in patients with brain and bone malformations and unexplained postnatal death [microcephalic osteodysplastic primordial dwarfism type 1 (MOPD 1) or Taybi-Linder syndrome (TALS); Mendelian Inheritance in Man ID no. 210710]. Expression of a subgroup of genes, possibly linked to the disease phenotype, and minor intron splicing were affected in cell lines derived from TALS patients. Our findings demonstrate a crucial role of the minor spliceosome component U4atac snRNA in early human development and postnatal survival.
European Journal of Human Genetics | 2012
Siddharth Banka; Ratna Veeramachaneni; William Reardon; Emma Howard; Sancha Bunstone; Nicola Ragge; Michael J. Parker; Yanick J. Crow; Bronwyn Kerr; Helen Kingston; Kay Metcalfe; Kate Chandler; Alex Magee; Fiona Stewart; Vivienne McConnell; Deirdre E. Donnelly; Siren Berland; Gunnar Houge; Jenny Morton; Christine Oley; Nicole Revencu; Soo Mi Park; Sally Davies; Andrew E. Fry; Sally Ann Lynch; Harinder Gill; Susann Schweiger; Wayne W K Lam; John Tolmie; Shehla Mohammed
MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS. We identified MLL2 variants in 74 patients, of which 47 are novel and a majority are truncating. We show that pathogenic missense mutations were commonly located in exon 48. We undertook a systematic facial KS morphology study of patients with KS at our regional dysmorphology meeting. Our data suggest that nearly all patients with typical KS facial features have pathogenic MLL2 mutations, although KS can be phenotypically variable. Furthermore, we show that MLL2 mutation-positive KS patients are more likely to have feeding problems, kidney anomalies, early breast bud development, joint dislocations and palatal malformations in comparison with MLL2 mutation-negative patients. Our work expands the mutation spectrum of MLL2 that may help in better understanding of this molecule, which is important in gene expression, epigenetic control of active chromatin states, embryonic development and cancer. Our analyses of the phenotype indicates that MLL2 mutation-positive and -negative patients differ systematically, and genetic heterogeneity of KS is not as extensive as previously suggested. Moreover, phenotypic variability of KS suggests that MLL2 testing should be considered even in atypical patients.
European Journal of Human Genetics | 2015
Tamsin Gannon; Rahat Perveen; Helene Schlecht; Simon Ramsden; Beverley Anderson; Bronwyn Kerr; Ruth Day; Siddharth Banka; Mohnish Suri; Siren Berland; Michael T. Gabbett; Alan Ma; Stan Lyonnet; Valérie Cormier-Daire; Ruestem Yilmaz; Guntram Borck; Dagmar Wieczorek; Britt-Marie Anderlid; Sarah F. Smithson; Julie Vogt; Heather Moore-Barton; Pelin Ozlem Simsek-Kiper; Isabelle Maystadt; A Destree; Jessica Bucher; Brad Angle; Shehla Mohammed; Emma Wakeling; Sue Price; Amihood Singer
KAT6B sequence variants have been identified previously in both patients with the Say-Barber-Biesecker type of blepharophimosis mental retardation syndromes (SBBS) and in the more severe genitopatellar syndrome (GPS). We report on the findings in a previously unreported group of 57 individuals with suggestive features of SBBS or GPS. Likely causative variants have been identified in 34/57 patients and were commonly located in the terminal exons of KAT6B. Of those where parental samples could be tested, all occurred de novo. Thirty out of thirty-four had truncating variants, one had a missense variant and the remaining three had the same synonymous change predicted to affect splicing. Variants in GPS tended to occur more proximally to those in SBBS patients, and genotype/phenotype analysis demonstrated significant clinical overlap between SBBS and GPS. The de novo synonymous change seen in three patients with features of SBBS occurred more proximally in exon 16. Statistical analysis of clinical features demonstrated that KAT6B variant-positive patients were more likely to display hypotonia, feeding difficulties, long thumbs/great toes and dental, thyroid and patella abnormalities than KAT6B variant-negative patients. The few reported patients with KAT6B haploinsufficiency had a much milder phenotype, though with some features overlapping those of SBBS. We report the findings in a previously unreported patient with a deletion of the KAT6B gene to further delineate the haploinsufficiency phenotype. The molecular mechanisms giving rise to the SBBS and GPS phenotypes are discussed.
European Journal of Human Genetics | 2013
Siren Berland; Mia Appelbäck; Ove Bruland; Jasmin Beygo; Karin Buiting; Deborah J.G. Mackay; I. Karen Temple; Gunnar Houge
Classical Beckwith–Wiedemann syndrome (BWS) was diagnosed in two sisters and their male cousin. The children’s mothers and a third sister were tall statured (178, 185 and 187 cm) and one had mild BWS features as a child. Their parents had average heights of 173 cm (mother) and 180 cm (father). This second generation tall stature and third generation BWS correlated with increased methylation of the maternal H19/IGF2-locus. The results were obtained by bisulphite treatment and subclone Sanger sequencing or next generation sequencing to quantitate the degree of CpG-methylation on three locations: the H19 promoter region and two CTCF binding sites in the H19 imprinting control region (ICR1), specifically in ICR1 repeats B1 and B7. Upon ICR1 copy number analysis and sequencing, the same maternal point variant NCBI36:11:g.1979595T>C that had been described previously as a cause of BWS in three brothers, was found. As expected, this point variant was on the paternal allele in the non-affected grandmother. This nucleotide variant has been shown to affect OCTamer-binding transcription factor-4 (OCT4) binding, which may be necessary for maintaining the unmethylated state of the maternal allele. Our data extend these findings by showing that the OCT4 binding site mutation caused incomplete switching from paternal to maternal ICR1 methylation imprint, and that upon further maternal transmission, methylation of the incompletely demethylated variant ICR1 allele was further increased. This suggests that maternal and paternal ICR1 alleles are treated differentially in the female germline, and only the paternal allele appears to be capable of demethylation.
Molecular Syndromology | 2010
Siren Berland; K. Alme; Atle Brendehaug; Gunnar Houge; Randi Hovland
In a 16-year-old girl with intellectual disability, irregular teeth, slight body asymmetry, and striated skin pigmentation, highly skewed X-inactivation increased the likelihood of an X-linked cause of her condition. Among these, prominent supraorbital ridges and hearing loss suggested a filaminopathy, but no filamin A mutation was found. The correct diagnosis, Borjeson-Forssman-Lehmann syndrome (BFLS, MIM#301900), was first made when a copy number array identified a de novo 15-kb deletion of the terminal 3 exons of the PHF6 gene. In retrospect, her phenotype resembled that of males with BFLS. Such deletions of PHF6 have not been reported previously. This might be because PHF6 mutations are rarely looked for in females since classical BFLS so far has been thought to be a male-specific syndrome, and large PHF6 deletions might be incompatible with male fetal survival. If this is the case, sporadic BFLS could be more frequent in females than in males.
Journal of Clinical Investigation | 2015
Gunnar Houge; Dorien Haesen; Lisenka E.L.M. Vissers; Sarju G. Mehta; Michael J. Parker; Michael Wright; Julie Vogt; Shane McKee; John Tolmie; Nuno J V Cordeiro; Tjitske Kleefstra; Marjolein H. Willemsen; Margot R.F. Reijnders; Siren Berland; Eli Hayman; Eli Lahat; Eva H. Brilstra; Koen L.I. van Gassen; Evelien Zonneveld-Huijssoon; Charlotte I. de Bie; Alexander Hoischen; Evan E. Eichler; Rita Holdhus; Vidar M. Steen; Stein Ove Døskeland; David Fitzpatrick; Veerle Janssens
Here we report inherited dysregulation of protein phosphatase activity as a cause of intellectual disability (ID). De novo missense mutations in 2 subunits of serine/threonine (Ser/Thr) protein phosphatase 2A (PP2A) were identified in 16 individuals with mild to severe ID, long-lasting hypotonia, epileptic susceptibility, frontal bossing, mild hypertelorism, and downslanting palpebral fissures. PP2A comprises catalytic (C), scaffolding (A), and regulatory (B) subunits that determine subcellular anchoring, substrate specificity, and physiological function. Ten patients had mutations within a highly conserved acidic loop of the PPP2R5D-encoded B56δ regulatory subunit, with the same E198K mutation present in 6 individuals. Five patients had mutations in the PPP2R1A-encoded scaffolding Aα subunit, with the same R182W mutation in 3 individuals. Some Aα cases presented with large ventricles, causing macrocephaly and hydrocephalus suspicion, and all cases exhibited partial or complete corpus callosum agenesis. Functional evaluation revealed that mutant A and B subunits were stable and uncoupled from phosphatase activity. Mutant B56δ was A and C binding-deficient, while mutant Aα subunits bound B56δ well but were unable to bind C or bound a catalytically impaired C, suggesting a dominant-negative effect where mutant subunits hinder dephosphorylation of B56δ-anchored substrates. Moreover, mutant subunit overexpression resulted in hyperphosphorylation of GSK3β, a B56δ-regulated substrate. This effect was in line with clinical observations, supporting a correlation between the ID degree and biochemical disturbance.
Journal of Clinical Investigation | 2016
Silvia Martin-Almedina; Ines Martinez-Corral; Rita Holdhus; Andres Vicente; Elisavet Fotiou; Shin Lin; Kjell Petersen; Michael A. Simpson; Alexander Hoischen; Christian Gilissen; Heather Jeffery; Giles Atton; Christina Karapouliou; Glen Brice; Kristiana Gordon; John Wiseman; Marianne Wedin; Stanley G. Rockson; Steve Jeffery; Peter S. Mortimer; Michael Snyder; Siren Berland; Sahar Mansour; Taija Mäkinen; Pia Ostergaard
Hydrops fetalis describes fluid accumulation in at least 2 fetal compartments, including abdominal cavities, pleura, and pericardium, or in body tissue. The majority of hydrops fetalis cases are nonimmune conditions that present with generalized edema of the fetus, and approximately 15% of these nonimmune cases result from a lymphatic abnormality. Here, we have identified an autosomal dominant, inherited form of lymphatic-related (nonimmune) hydrops fetalis (LRHF). Independent exome sequencing projects on 2 families with a history of in utero and neonatal deaths associated with nonimmune hydrops fetalis uncovered 2 heterozygous missense variants in the gene encoding Eph receptor B4 (EPHB4). Biochemical analysis determined that the mutant EPHB4 proteins are devoid of tyrosine kinase activity, indicating that loss of EPHB4 signaling contributes to LRHF pathogenesis. Further, inactivation of Ephb4 in lymphatic endothelial cells of developing mouse embryos led to defective lymphovenous valve formation and consequent subcutaneous edema. Together, these findings identify EPHB4 as a critical regulator of early lymphatic vascular development and demonstrate that mutations in the gene can cause an autosomal dominant form of LRHF that is associated with a high mortality rate.
Clinical Dysmorphology | 2010
Siren Berland; Gunnar Houge
Clinical summary The patient, now 11 years old, is a girl born by elective cesarean section after an uneventful pregnancy. Neonatal findings were normal. She has two healthy siblings and healthy parents. Lack of eye contact was noted at 6 weeks of age, and strabismus, intermittent nystagmus, and mild hypotonia were noted at 4 months of age. Some febrile tonic–clonic seizures were observed between the ages of 1 and 7 years. Several atypical seizures with myoclonic jerks were also noted. Standard electroencephalographic (EEG) record was normal at the age of 1 year, but a few months later a generalized epileptiform pattern was present. Repeat EEG attempts at the ages of 6 and 8 years were unsuccessful because of lack of cooperation. The patient’s epilepsy was never troublesome and no recurrences have been noted after the cessation of low-dose valproate treatment at the age of 8 years. The patient’s psychomotor development has been severely retarded. She sat at the age of 3 years, crawled and walked with support from the age of 4 years, and first learned to walk unaided at the age of 11 years. Fine motor skills are better than gross motor skills. No verbal language is present, but she mimics sounds. She does not produce proper hand signs, but make use of body language. She uses a picture exchange communication program whereby she chooses, for example, an activity or type of food and delivers the picture to the instructor. She also enjoys simple computer games with touch screen. Receptive language skills are better than expressive, and she can follow instructions. Her height has followed the 97.5 centile (tall family), and her head circumferences have been on the 2.5 centile. She resembles her sisters, who also have long and upslanted palpebral fissures and everted lower lids. More nonfamiliar features are mild brachycephaly, wide forehead, short and wide philtrum with an everted upper lip, and short and broad chin (Fig. 1). She has mild clinodactyly and short and narrow feet. Ankle stabilization surgery has been performed. At consultation at the age of 11 years, poor eye contact and stereotypic movements were the most obvious features. A peculiar finding was a pit in the jugular fossa. She is usually a happy and joyful child, has no panic attacks but is easily scared of loud sounds, is
American Journal of Medical Genetics Part A | 2014
Stefan Johansson; Siren Berland; Gyri Aasland Gradek; Ernie M.H.F. Bongers; Nicole de Leeuw; Rolph Pfundt; Madeleine Fannemel; Olaug K. Rødningen; Atle Brendehaug; Bjørn Ivar Haukanes; Randi Hovland; Gunnar Helland; Gunnar Houge
MEIS2 is a homeodomain‐containing transcription factor of the TALE superfamily that has been proven important for development. We confirm and extend a recent single clinical report stating that deletions in MEIS2 can cause cleft palate [Crowley et al. (2010); Am J Med Genet 152A:1326–1327]. Here we report on five additional patients with 15q14 deletions of sizes 0.6, 0.6, 1.0, 1.9, and 4.8 Mb, respectively, all involving MEIS2. In addition, we present a family with four affected individuals and an intragenic 58 kb direct duplication disrupting MEIS2. In total, 7/9 cases had clefting, from mild (submucous cleft palate) to severe (cleft lip and palate), and 3/9 cases had ventricular septal defects. All cases had delayed motor development and most had learning disability, at worst in the mild intellectual disability range. The cases had overlapping facial features (broad forehead, finely arched eyebrows, mildly shortened philtrum, and tented upper lip) but individually they were not considered to be dysmorphic. Our results show that MEIS2 is a gene needed for palate closure. In syndromic cases of cleft palate, MEIS2 should be considered among the candidate genes, for example, in cases without 22q11.2 deletions.