Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siripong Palee is active.

Publication


Featured researches published by Siripong Palee.


International Journal of Cardiology | 2013

Cardioprotective effect of dipeptidyl peptidase-4 inhibitor during ischemia-reperfusion injury.

Kroekkiat Chinda; Siripong Palee; Sirirat Surinkaew; Mattabhorn Phornphutkul; Siriporn C. Chattipakorn; Nipon Chattipakorn

BACKGROUND Dipeptidyl peptidase-4 (DPP-4) inhibitor is a new anti-diabetic drug for type-2 diabetes mellitus patients. Despite its benefits on glycemic control, the effects of DPP-4 inhibitor on the heart during ischemia-reperfusion (I/R) periods are not known. We investigated the effect of DPP-4 inhibitor on cardiac electrophysiology and infarct size in a clinically relevant I/R model in swine and its underlying cardioprotective mechanism. METHODS Fourteen pigs were randomized to receive either DPP-4 inhibitor (vildagliptin) 50mg or normal saline intravenously prior to a 90-min left anterior descending artery occlusion, followed by a 120-min reperfusion period. The hemodynamic, cardiac electrophysiological and arrhythmic parameters, and the infarct size were determined before and during I/R. Rat cardiac mitochondria were used to study the protective effects of DPP-4 inhibitor on cardiac mitochondrial dysfunction caused by severe oxidative stress induced by H2O2 to mimic the I/R condition. RESULTS Compared to the saline group, DPP-4 inhibitor attenuated the shortening of the effective refractory period (ERP), decreased the number of PVCs, increased the ventricular fibrillation threshold (VFT) during the ischemic period, and also decreased the infarct size. In cardiac mitochondria, DPP-4 inhibitor decreased the reactive oxygen species (ROS) production and prevented cardiac mitochondrial depolarization caused by severe oxidative stress. CONCLUSIONS During I/R, DPP-4 inhibitor stabilized the cardiac electrophysiology by preventing the ERP shortening, decreasing the number of PVCs, increasing the VFT, and decreasing the infarct size. This cardioprotective effect could be due to its prevention of cardiac mitochondrial dysfunction caused by severe oxidative stress during I/R.


Heart Rhythm | 2013

Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury

Krekwit Shinlapawittayatorn; Kroekkiat Chinda; Siripong Palee; Sirirat Surinkaew; Kittiya Thunsiri; Punate Weerateerangkul; Siriporn C. Chattipakorn; Bruce H. Kenknight; Nipon Chattipakorn

BACKGROUND Right cervical vagus nerve stimulation (VNS) provides cardioprotective effects against acute ischemia-reperfusion injury in small animals. However, inconsistent findings have been reported. OBJECTIVE To determine whether low-amplitude, left cervical VNS applied either intermittently or continuously imparts cardioprotection against acute ischemia-reperfusion injury. METHODS Thirty-two isoflurane-anesthetized swine (25-30 kg) were randomized into 4 groups: control (sham operated, no VNS), continuous-VNS (C-VNS; 3.5 mA, 20 Hz), intermittent-VNS (I-VNS; continuously recurring cycles of 21-second ON, 30-second OFF), and I-VNS + atropine (1 mg/kg). Left cervical VNS was applied immediately after left anterior descending artery occlusion (60 minutes) and continued until the end of reperfusion (120 minutes). The ischemic and nonischemic myocardium was harvested for cardiac mitochondrial function assessment. RESULTS VNS significantly reduced infarct size, improved ventricular function, decreased ventricular fibrillation episodes, and attenuated cardiac mitochondrial reactive oxygen species production, depolarization, and swelling, compared with the control group. However, I-VNS produced the most profound cardioprotective effects, particularly infarct size reduction and decreased ventricular fibrillation episodes, compared to both I-VNS + atropine and C-VNS. These beneficial effects of VNS were abolished by atropine. CONCLUSIONS During ischemia-reperfusion injury, both C-VNS and I-VNS provide significant cardioprotective effects compared with I-VNS + atropine. These beneficial effects were abolished by muscarinic blockade, suggesting the importance of muscarinic receptor modulation during VNS. The protective effects of VNS could be due to its protection of mitochondrial function during ischemia-reperfusion.


Heart Rhythm | 2014

Vagus nerve stimulation initiated late during ischemia, but not reperfusion, exerts cardioprotection via amelioration of cardiac mitochondrial dysfunction

Krekwit Shinlapawittayatorn; Kroekkiat Chinda; Siripong Palee; Sirirat Surinkaew; Sirinart Kumfu; Sarawut Kumphune; Siriporn C. Chattipakorn; Bruce H. Kenknight; Nipon Chattipakorn

BACKGROUND We previously reported that vagus nerve stimulation (VNS) applied immediately at the onset of cardiac ischemia provides cardioprotection against cardiac ischemic-reperfusion (I/R) injury. OBJECTIVE This study aimed to determine whether VNS applied during ischemia or at the onset of reperfusion exerts differential cardioprotection against cardiac I/R injury. METHODS Twenty-eight swine (25-30 kg) were randomized into 4 groups: Control (sham-operated, no VNS), VNS-ischemia (VNS applied during ischemia), VNS-reperfusion (VNS applied during reperfusion), and VNS-ischemia+atropine (VNS applied during ischemia with 1 mg/kg atropine administration). Ischemia was induced by left anterior descending (LAD) coronary artery occlusion for 60 minutes, followed by 120 minutes of reperfusion. VNS was applied either 30 minutes after LAD coronary artery occlusion or at the onset of reperfusion and continued until the end of reperfusion. Cardiac function, infarct size, myocardial levels of connexin 43, cytochrome c, tumor necrosis factor α, and interleukin 4, and cardiac mitochondrial function were determined. RESULTS VNS applied 30 minutes after LAD coronary artery occlusion, but not at reperfusion, markedly reduced ventricular fibrillation incidence and infarct size (~59%), improved cardiac function; attenuated cardiac mitochondrial reactive oxygen species production, depolarization, swelling, and cytochrome c release; and increased the amount of phosphorylated connexin 43 and interleukin 4 as compared with the Control group. These beneficial effects of VNS were abolished by atropine. CONCLUSION VNS could provide significant cardioprotective effects even when initiated later during ischemia, but was not effective after reperfusion. These findings indicate the importance of timing of VNS initiation and warrant the potential clinical application of VNS in protecting myocardium at risk of I/R injury.


PLOS ONE | 2014

Combined Vildagliptin and Metformin Exert Better Cardioprotection than Monotherapy against Ischemia-Reperfusion Injury in Obese-Insulin Resistant Rats

Nattayaporn Apaijai; Kroekkiat Chinda; Siripong Palee; Siriporn C. Chattipakorn; Nipon Chattipakorn

Background Obese-insulin resistance caused by long-term high-fat diet (HFD) consumption is associated with left ventricular (LV) dysfunction and increased risk of myocardial infarction. Metformin and vildagliptin have been shown to exert cardioprotective effects. However, the effect of these drugs on the hearts under obese-insulin resistance with ischemia-reperfusion (I/R) injury is unclear. We hypothesized that combined vildagliptin and metformin provide better protective effects against I/R injury than monotherapy in obese-insulin resistant rats. Methodology Male Wistar rats were fed either HFD or normal diet. Rats in each diet group were divided into 4 subgroups to receive vildagliptin, metformin, combined vildagliptin and metformin, or saline for 21 days. Ischemia due to left anterior descending artery ligation was allowed for 30-min, followed by 120-min reperfusion. Metabolic parameters, heart rate variability (HRV), LV function, infarct size, mitochondrial function, calcium transient, Bax and Bcl-2, and Connexin 43 (Cx43) were determined. Rats developed insulin resistance after 12 weeks of HFD consumption. Vildagliptin, metformin, and combined drugs improved metabolic parameters, HRV, and LV function. During I/R, all treatments improved LV function, reduced infarct size and Bax, increased Bcl-2, and improved mitochondrial function in HFD rats. However, only combined drugs delayed the time to the first VT/VF onset, reduced arrhythmia score and mortality rate, and increased p-Cx43 in HFD rats. Conclusion Although both vildagliptin and metformin improved insulin resistance and attenuate myocardial injury caused by I/R, combined drugs provided better outcomes than single therapy by reducing arrhythmia score and mortality rate.


Experimental Physiology | 2013

Mechanisms responsible for beneficial and adverse effects of rosiglitazone in a rat model of acute cardiac ischaemia–reperfusion

Siripong Palee; Punate Weerateerangkul; Kroekkiat Chinda; Siriporn C. Chattipakorn; Nipon Chattipakorn

•  What is the central question of this study? Controversy exists regarding the beneficial and adverse effects of rosiglitazone. We sought to determine the effects of rosiglitazone in the heart during ischaemia–reperfusion injury. •  What is the main finding and what is its importance? We demonstrated that rosiglitazone simultaneously exerted both beneficial and adverse effects on the heart during ischaemia–reperfusion. These findings provided new mechanistic insights into the effects of this drug, and elucidate the possibility of its undesirable effects in patients taking this drug.


Experimental Physiology | 2011

Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart

Siripong Palee; Punate Weerateerangkul; Sirirat Surinkeaw; Siriporn C. Chattipakorn; Nipon Chattipakorn

Rosiglitazone, a peroxisome proliferator‐activated receptor γ agonist, has been used to treat type 2 diabetes. Despite debates regarding its cardioprotection, the effects of rosiglitazone on cardiac electrophysiology are still unclear. This study determined the effect of rosiglitazone on ventricular fibrillation (VF) incidence, VF threshold (VFT), defibrillation threshold (DFT) and mitochondrial function during ischaemia and reperfusion. Twenty‐six pigs were used. In each pig, either rosiglitazone (1 mg kg−1) or normal saline solution was administered intravenously for 60 min. Then, the left anterior descending coronary artery was ligated for 60 min and released to promote reperfusion for 120 min. The cardiac electrophysiological parameters were determined at the beginning of the study and during the ischaemia and reperfusion periods. The heart was removed, and the area at risk and infarct size in each heart were determined. Cardiac mitochondria were isolated for determination of mitochondrial function. Rosiglitazone did not improve the DFT and VFT during the ischaemia–reperfusion period. In the rosiglitazone group, the VF incidence was increased (58 versus 10%) and the time to the first occurrence of VF was decreased (3 ± 2 versus 19 ± 1 min) in comparison to the vehicle group (P < 0.05). However, the infarct size related to the area at risk in the rosiglitazone group was significantly decreased (P < 0.05). In the cardiac mitochondria, rosiglitazone did not alter the level of production of reactive oxygen species and could not prevent mitochondrial membrane potential changes. Rosiglitazone increased the propensity for VF, and could neither increase defibrillation efficacy nor improve cardiac mitochondrial function.


World Journal of Cardiology | 2011

PPARγ activator, rosiglitazone: Is it beneficial or harmful to the cardiovascular system?

Siripong Palee; Siriporn C. Chattipakorn; Arintaya Phrommintikul; Nipon Chattipakorn

Rosiglitazone is a synthetic agonist of peroxisome proliferator-activated receptor γ which is used to improve insulin resistance in patients with type II diabetes. Rosiglitazone exerts its glucose-lowering effects by improving insulin sensitivity. Data from various studies in the past decade suggest that the therapeutic effects of rosiglitazone reach far beyond its use as an insulin sensitizer since it also has other benefits on the cardiovascular system such as improvement of contractile dysfunction, inhibition of the inflammatory response by reducing neutrophil and macrophage accumulation, and the protection of myocardial injury during ischemic/reperfusion in different animal models. Previous clinical studies in type II diabetes patients demonstrated that rosiglitazone played an important role in protecting against arteriosclerosis by normalizing the metabolic disorders and reducing chronic inflammation of the vascular system. Despite these benefits, inconsistent findings have been reported, and growing evidence has demonstrated adverse effects of rosiglitazone on the cardiovascular system, including increased risk of acute myocardial infarction, heart failure and chronic heart failure. As a result, rosiglitazone has been recently withdrawn from EU countries. Nevertheless, the effect of rosiglitazone on ischemic heart disease has not yet been firmly established. Future prospective clinical trials designed for the specific purpose of establishing the cardiovascular benefit or risk of rosiglitazone would be the best way to resolve the uncertainties regarding the safety of rosiglitazone in patients with heart disease.


Acta Physiologica | 2011

Granulocyte colony-stimulating factor stabilizes cardiac electrophysiology and decreases infarct size during cardiac ischaemic/reperfusion in swine

Natnicha Kanlop; S. Thommasorn; Siripong Palee; Punate Weerateerangkul; S. Suwansirikul; Siriporn C. Chattipakorn; Nipon Chattipakorn

Aim:  Effects of granulocyte colony‐stimulating factor (G‐CSF) on cardiac electrophysiology during ischaemic/reperfusion (I/R) period are unclear. We hypothesized that G‐CSF stabilizes cardiac electrophysiology during I/R injury by prolonging the effective refractory period (ERP), increasing the ventricular fibrillation threshold (VFT) and decreasing the defibrillation threshold (DFT), and that the cardioprotection of G‐CSF is via preventing cardiac mitochondrial dysfunction.


Journal of Cardiovascular Pharmacology | 2012

Effects of Kaempferia parviflora Wall. Ex. Baker and sildenafil citrate on cGMP level, cardiac function, and intracellular Ca2+ regulation in rat hearts.

Punate Weerateerangkul; Siripong Palee; Kroekkiat Chinda; Siriporn C. Chattipakorn; Nipon Chattipakorn

Abstract: Although Kaempferia parviflora extract (KPE) and its flavonoids have positive effects on the nitric oxide (NO) signaling pathway, its mechanisms on the heart are still unclear. Because our previous studies demonstrated that KPE decreased defibrillation efficacy in swine similar to that of sildenafil citrate, the phosphodiesterase-5 inhibitor, it is possible that KPE may affect the cardiac NO signaling pathway. In the present study, the effects of KPE and sildenafil citrate on cyclic guanosine monophosphate (cGMP) level, modulation of cardiac function, and Ca2+ transients in ventricular myocytes were investigated. In a rat model, cardiac cGMP level, cardiac function, and Ca2+ transients were measured before and after treatment with KPE and sildenafil citrate. KPE significantly increased the cGMP level and decreased cardiac function and Ca2+ transient. These effects were similar to those found in the sildenafil citrate–treated group. Furthermore, the nonspecific NOS inhibitor could abolish the effects of KPE and sildenafil citrate on Ca2+ transient. KPE has positive effect on NO signaling in the heart, resulting in an increased cGMP level, similar to that of sildenafil citrate. This effect was found to influence the physiology of normal heart via the attenuation of cardiac function and the reduction of Ca2+ transient in ventricular myocytes.


Journal of Cellular and Molecular Medicine | 2017

Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury

Chayodom Maneechote; Siripong Palee; Siriporn C. Chattipakorn; Nipon Chattipakorn

The current therapeutic strategy for the management of acute myocardial infarction (AMI) is to return blood flow into the occluded coronary artery of the heart, a process defined as reperfusion. However, reperfusion itself can increase mortality rates in AMI patients because of cardiac tissue damage and dysfunction, which is termed ‘ischaemia/reperfusion (I/R) injury’. Mitochondria play an important role in myocardial I/R injury as disturbance of mitochondrial dynamics, especially excessive mitochondrial fission, is a predominant cause of cardiac dysfunction. Therefore, pharmacological intervention and therapeutic strategies which modulate the mitochondrial dynamics balance during I/R injury could exert great beneficial effects to the I/R heart. This review comprehensively summarizes and discusses the effects of mitochondrial fission inhibitors as well as mitochondrial fusion promoters on cardiac and mitochondrial function during myocardial I/R injury. The comparison of the effects of both compounds given at different time‐points during the course of I/R injury (i.e. prior to ischaemia, during ischaemia and at the reperfusion period) are also summarized and discussed. Finally, this review also details important information which may contribute to clinical practices using these drugs to improve the quality of life in AMI patients.

Collaboration


Dive into the Siripong Palee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge