Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sirja Viitala is active.

Publication


Featured researches published by Sirja Viitala.


Genetics | 2006

The Role of the Bovine Growth Hormone Receptor and Prolactin Receptor Genes in Milk, Fat and Protein Production in Finnish Ayrshire Dairy Cattle

Sirja Viitala; Joanna Szyda; Sarah Blott; Nina Schulman; Martin Lidauer; Asko Mäki-Tanila; Michel Georges; Johanna Vilkki

We herein report new evidence that the QTL effect on chromosome 20 in Finnish Ayrshire can be explained by variation in two distinct genes, growth hormone receptor (GHR) and prolactin receptor (PRLR). In a previous study in Holstein–Friesian dairy cattle an F279Y polymorphism in the transmembrane domain of GHR was found to be associated with an effect on milk yield and composition. The result of our multimarker regression analysis suggests that in Finnish Ayrshire two QTL segregate on the chromosomal region including GHR and PRLR. By sequencing the coding sequences of GHR and PRLR and the sequence of three GHR promoters from the pooled samples of individuals of known QTL genotype, we identified two substitutions that were associated with milk production traits: the previously reported F-to-Y substitution in the transmembrane domain of GHR and an S-to-N substitution in the signal peptide of PRLR. The results provide strong evidence that the effect of PRLR S18N polymorphism is distinct from the GHR F279Y effect. In particular, the GHR F279Y has the highest influence on protein percentage and fat percentage while PRLR S18N markedly influences protein and fat yield. Furthermore, an interaction between the two loci is suggested.


Genetics Selection Evolution | 2008

Quantitative trait loci for fertility traits in Finnish Ayrshire cattle

Nina Schulman; Goutam Sahana; Mogens Sandø Lund; Sirja Viitala; Johanna Vilkki

A whole genome scan was carried out to detect quantitative trait loci (QTL) for fertility traits in Finnish Ayrshire cattle. The mapping population consisted of 12 bulls and 493 sons. Estimated breeding values for days open, fertility treatments, maternal calf mortality and paternal non-return rate were used as phenotypic data. In a granddaughter design, 171 markers were typed on all 29 bovine autosomes. Associations between markers and traits were analysed by multiple marker regression. Multi-trait analyses were carried out with a variance component based approach for the chromosomes and trait combinations, which were observed significant in the regression method. Twenty-two chromosome-wise significant QTL were detected. Several of the detected QTL areas were overlapping with milk production QTL previously identified in the same population. Multi-trait QTL analyses were carried out to test if these effects were due to a pleiotropic QTL affecting fertility and milk yield traits or to linked QTL causing the effects. This distinction could only be made with confidence on BTA1 where a QTL affecting milk yield is linked to a pleiotropic QTL affecting days open and fertility treatments.


Animal Genetics | 2008

Fine-mapping QTL for mastitis resistance on BTA9 in three Nordic red cattle breeds.

Goutam Sahana; Mogens Sandø Lund; L. Andersson-Eklund; Nicola Hastings; A. Fernandez; Terhi Iso-Touru; Bo Thomsen; Sirja Viitala; Peter Sørensen; J. L. Williams; Johanna Vilkki

A QTL affecting clinical mastitis and/or somatic cell score (SCS) has been reported previously on chromosome 9 from studies in 16 families from the Swedish Red and White (SRB), Finnish Ayrshire (FA) and Danish Red (DR) breeds. In order to refine the QTL location, 67 markers were genotyped over the whole chromosome in the 16 original families and 18 additional half-sib families. This enabled linkage disequilibrium information to be used in the analysis. Data were analysed by an approach that combines information from linkage and linkage disequilibrium, which allowed the QTL affecting clinical mastitis to be mapped to a small interval (<1 cM) between the markers BM4208 and INRA084. This QTL showed a pleiotropic effect on SCS in the DR and SRB breeds. Haplotypes associated with variations in mastitis resistance were identified. The haplotypes were predictive in the general population and can be used in marker-assisted selection. Pleiotropic effects of the mastitis QTL were studied for three milk production traits and eight udder conformation traits. This QTL was also associated with yield traits in DR but not in FA or SRB. No QTL were found for udder conformation traits on chromosome 9.


Animal Genetics | 2009

Fine mapping of quantitative trait loci for mastitis resistance on bovine chromosome 11

Nina Schulman; Goutam Sahana; Terhi Iso-Touru; Mogens Sandø Lund; L. Andersson-Eklund; Sirja Viitala; S. Värv; Haldja Viinalass; Johanna Vilkki

Quantitative trait loci (QTL) affecting clinical mastitis (CM) and somatic cell score (SCS) were mapped on bovine chromosome 11. The mapping population consisted of 14 grandsire families belonging to three Nordic red cattle breeds: Finnish Ayrshire (FA), Swedish Red and White (SRB) and Danish Red. The families had previously been shown to segregate for udder health QTL. A total of 524 progeny tested bulls were included in the analysis. A linkage map including 33 microsatellite and five SNP markers was constructed. We performed combined linkage disequilibrium and linkage analysis (LDLA) using the whole data set. Further analyses were performed for FA and SRB separately to study the origin of the identified QTL/haplotype and to examine if it was common in both populations. Finally, different two-trait models were fitted. These postulated either a pleiotropic QTL affecting both traits; two linked QTL, each affecting one trait; or one QTL affecting a single trait. A QTL affecting CM was fine-mapped. In FA, a haplotype having a strong association with a high negative effect on mastitis resistance was identified. The mapping precision of an earlier detected SCS-QTL was not improved by the LDLA analysis because of lack of linkage disequilibrium between the markers used and the QTL in the region.


Journal of Nutrition | 2016

Ruminal Infusions of Cobalt EDTA Modify Milk Fatty Acid Composition via Decreases in Fatty Acid Desaturation and Altered Gene Expression in the Mammary Gland of Lactating Cows

Heidi Leskinen; Sirja Viitala; Mervi Mutikainen; Piia Kairenius; Ilma Tapio; Juhani Taponen; Laurence Bernard; Johanna Vilkki; Kevin J. Shingfield

BACKGROUND Intravenous or ruminal infusion of lithium salt of cobalt EDTA (Co-EDTA) or cobalt-acetate alters milk fat composition in cattle, but the mechanisms involved are not known. OBJECTIVE The present study evaluated the effect of ruminal Co-EDTA infusion on milk FA composition, mammary lipid metabolism, and mammary lipogenic gene expression. METHODS For the experiment, 4 cows in midlactation and fitted with rumen cannulae were used in a 4 × 4 Latin square with 28-d periods. Co-EDTA was administered in the rumen to supply 0, 1.5, 3.0, or 4.5 g Co/d over an 18-d interval with a 10-d washout between experimental periods. Milk production was recorded daily, and milk FA composition was determined on alternate days. Mammary tissue was biopsied on day 16, and arteriovenous differences of circulating lipid fractions and FA uptake across the mammary gland were measured on day 18. RESULTS Co-EDTA had no effect on intake, proportions of rumen volatile FA, or milk production but caused dose-dependent changes in milk FA composition. Alterations in milk fat composition were evident within 3 d of infusion and characterized by linear or quadratic decreases (P < 0.05) in FAs containing a cis-9 double bond, an increase in 4:0 and 16:0, and linear decreases in milk 8:0, 10:0, 12:0, and 14:0 concentrations. Co-EDTA progressively decreased (P < 0.05) the stearoyl-CoA desaturase (SCD)-catalyzed desaturation of FAs in the mammary gland by up to 72% but had no effect on mammary SCD1 mRNA or SCD protein abundance. Changes in milk FA composition were accompanied by altered expression of specific genes involved in de novo FA and triacylglycerol synthesis. CONCLUSION Ruminal infusion of Co-EDTA alters milk FA composition in cattle via a mechanism that involves decreases in the desaturation of FAs synthesized de novo or extracted from blood and alterations in mammary lipogenic gene expression, without affecting milk fat yield.


Journal of Dairy Science | 2018

Dietary supplement of conjugated linoleic acids or polyunsaturated fatty acids suppressed the mobilization of body fat reserves in dairy cows at early lactation through different pathways

Nanbing Qin; Alireza Bayat; Erminio Trevisi; Andrea Minuti; Piia Kairenius; Sirja Viitala; Mervi Mutikainen; Heidi Leskinen; Kari Elo; Tuomo Kokkonen; Johanna Vilkki

To investigate the metabolic changes in the adipose tissue (AT) of dairy cows under milk fat depression (MFD), 30 cows were randomly allocated to a control diet, a conjugated linoleic acid (CLA)-supplemented diet, or a high-starch diet supplemented with a mixture of sunflower and fish oil (2:1; as HSO diet) from 1 to 112 d in milk. Performance of animals, milk yield, milk composition, energy balance, and blood metabolites were measured during lactation. Quantitative PCR analyses were conducted on the AT samples collected at wk 3 and 15 of lactation. The CLA and HSO diets considerably depressed milk fat yield and milk fat content at both wk 3 and 15 in the absence of significant changes in milk protein and lactose contents. In addition, the HSO diet lowered milk yield at wk 15 and decreased dry matter intake of cows from wk 3 to 15. Compared with the control, both CLA and HSO groups showed reduced body weight loss, improved energy balance, and decreased plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate at early lactation. The gene expression analyses reflected suppressed lipolysis in AT of the CLA and HSO groups compared with the control at wk 3, as suggested by the downregulation of hormone-sensitive lipase and fatty acid binding protein 4 and the upregulation of perilipin 2. In addition, the HSO diet promoted lipogenesis in AT at wk 15 through the upregulation of 1-acylglycerol-3-phosphate O-acyltransferase 2, mitochondrial glycerol-3-phosphate acyltransferase, perilipin 2, and peroxisome proliferator-activated receptor γ. The CLA diet likely regulated insulin sensitivity in AT as it upregulated the transcription of various genes involved in insulin signaling, inflammatory responses, and ceramide metabolism, including protein kinase B2, nuclear factor κ B1, toll-like receptor 4, caveolin 1, serine palmitoyltransferase long chain base subunit 1, and N-acylsphingosine amidohydrolase 1. In contrast, the HSO diet resulted in little or no change in the pathways relevant to insulin sensitivity. In conclusion, the CLA and HSO diets induced a shift in energy partitioning toward AT instead of mammary gland during lactation through the regulation of different pathways.


Agricultural and Food Science | 2008

Quantitative trait loci for udder conformation and other udder traits in Finnish Ayrshire cattle

Nina Schulman; Sirja Viitala; Johanna Vilkki

Udder traits are important due to their correlation with clinical mastitis which causes major economic losses to the dairy farms. Chromosomal areas associated with udder conformation traits, milking speed and leakage could be used in breeding programs to improve both udder traits and mastitis resistance. Quantitative trait loci (QTL) mapping for udder traits was carried out on bovine chromosomes (BTA) 9, 11, 14, 18, 20, 23, and 29, where earlier studies have indicated QTL for mastitis. A granddaughter design with 12 Ayrshire sire families and 360 sons was used. The sires and sons were typed for 35 markers. The traits analysed were udder depth, fore udder attachment, central ligament, distance from udder to floor, body stature, fore teat length, udder balance, rear udder height, milking speed, and leakage. Associations between markers and traits were analysed with multiple marker regression. Five genome-wise significant QTL were detected: stature on BTA14 and 23, udder balance on BTA23, rear udder height on BTA11, and central ligament on BTA23. On BTA11 and 14 the suggested QTL positions for udder traits are at the same position as previously detected QTL for mastitis and somatic cell count.;


Journal of Dairy Science | 2003

Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle.

Sirja Viitala; Nina Schulman; D.J. de Koning; Kari Elo; R. Kinos; Anneli Virta; Jouni Virta; Asko Mäki-Tanila; Johanna Vilkki


Journal of Dairy Science | 2004

Quantitative Trait Loci for Health Traits in Finnish Ayrshire Cattle

Nina Schulman; Sirja Viitala; Dirk-Jan de Koning; Jouni Virta; Asko Mäki-Tanila; Johanna Vilkki


Journal of Dairy Science | 2007

Joint Analysis of Quantitative Trait Loci for Clinical Mastitis and Somatic Cell Score on Five Chromosomes in Three Nordic Dairy Cattle Breeds

Mogens Sandø Lund; Goutam Sahana; L. Andersson-Eklund; Nicola Hastings; A. Fernandez; Nina Schulman; Bo Thomsen; Sirja Viitala; John L. Williams; A. Sabry; Haldja Viinalass; Johanna Vilkki

Collaboration


Dive into the Sirja Viitala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nina Schulman

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haldja Viinalass

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Värv

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge