Sissel Juul
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sissel Juul.
Nucleic Acids Research | 2008
Felicie F. Andersen; Bjarne Knudsen; Cristiano L. P. Oliveira; Rikke Frøhlich; Dinna Krüger; Jörg Bungert; Mavis Agbandje-McKenna; Robert McKenna; Sissel Juul; Christopher Veigaard; Jørn Koch; John L. Rubinstein; Bernt Guldbrandtsen; Marianne Smedegaard Hede; Göran Karlsson; Anni H. Andersen; Jan Skov Pedersen; Birgitta R. Knudsen
The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson–Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise are necessary before complex DNA structures can be routinely designed for the use in basal science and/or biotechnology. Here we present the design, construction and structural analysis of a covalently closed and stable 3D DNA structure with the connectivity of an octahedron, as defined by the double-stranded DNA helices that assembles from eight oligonucleotides with a yield of ∼30%. As demonstrated by Small Angle X-ray Scattering and cryo-Transmission Electron Microscopy analyses the eight-stranded DNA structure has a central cavity larger than the apertures in the surrounding DNA lattice and can be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures.
ACS Nano | 2012
Sissel Juul; Christine J. F. Nielsen; Rodrigo Labouriau; Amit Roy; Cinzia Tesauro; Pia W. Jensen; Charlotte Harmsen; Emil L. Kristoffersen; Ya-Ling Chiu; Rikke Frøhlich; Paola Fiorani; Janet Cox-Singh; David Tordrup; Jørn Koch; Anne-Lise Bienvenu; Alessandro Desideri; Stéphane Picot; Eskild Petersen; Kam W. Leong; Yi-Ping Ho; Magnus Stougaard; Birgitta R. Knudsen
We present an attractive new system for the specific and sensitive detection of the malaria-causing Plasmodium parasites. The system relies on isothermal conversion of single DNA cleavage-ligation events catalyzed specifically by the Plasmodium enzyme topoisomerase I to micrometer-sized products detectable at the single-molecule level. Combined with a droplet microfluidics lab-on-a-chip platform, this design allowed for sensitive, specific, and quantitative detection of all human-malaria-causing Plasmodium species in single drops of unprocessed blood with a detection limit of less than one parasite/μL. Moreover, the setup allowed for detection of Plasmodium parasites in noninvasive saliva samples from infected patients. During recent years malaria transmission has declined worldwide, and with this the number of patients with low-parasite density has increased. Consequently, the need for accurate detection of even a few parasites is becoming increasingly important for the continued combat against the disease. We believe that the presented droplet microfluidics platform, which has a high potential for adaptation to point-of-care setups suitable for low-resource settings, may contribute significantly to meet this demand. Moreover, potential future adaptation of the presented setup for the detection of other microorganisms may form the basis for the development of a more generic platform for diagnosis, fresh water or food quality control, or other purposes within applied or basic science.
ACS Nano | 2013
Sissel Juul; Federico Iacovelli; Mattia Falconi; Sofie Louise Kragh; Brian Christensen; Rikke Frøhlich; Oskar Franch; Emil L. Kristoffersen; Magnus Stougaard; Kam W. Leong; Yi-Ping Ho; Esben S. Sørensen; Victoria Birkedal; Alessandro Desideri; Birgitta R. Knudsen
We demonstrate temperature-controlled encapsulation and release of the enzyme horseradish peroxidase using a preassembled and covalently closed three-dimensional DNA cage structure as a controllable encapsulation device. The utilized cage structure was covalently closed and composed of 12 double-stranded B-DNA helices that constituted the edges of the structure. The double stranded helices were interrupted by short single-stranded thymidine linkers constituting the cage corners except for one, which was composed by four 32 nucleotide long stretches of DNA with a sequence that allowed them to fold into hairpin structures. As demonstrated by gel-electrophoretic and fluorophore-quenching experiments this design imposed a temperature-controlled conformational transition capability to the structure, which allowed entrance or release of an enzyme cargo at 37 °C while ensuring retainment of the cargo in the central cavity of the cage at 4 °C. The entrapped enzyme was catalytically active inside the DNA cage and was able to convert substrate molecules penetrating the apertures in the DNA lattice that surrounded the central cavity of the cage.
ACS Nano | 2011
Sissel Juul; Yi-Ping Ho; Jørn Koch; Felicie F. Andersen; Magnus Stougaard; Kam W. Leong; Birgitta R. Knudsen
In the present study we demonstrate highly sensitive detection of rare, aberrant cells in a population of wild-type human cells by combining a rolling-circle-enhanced enzyme activity single-molecule detection assay with a custom-designed microfluidic device. Besides reliable detection of low concentrations of aberrant cells, the integrated system allowed multiplexed detection of individual enzymatic events at the single cell level. The single cell sensitivity of the presented setup relies on the combination of single-molecule rolling-circle-enhanced enzyme activity detection with the fast reaction kinetics provided by a picoliter droplet reaction volume and subsequent concentration of signals in a customized drop-trap device. This setup allows the fast reliable analyses of enzyme activities in a vast number of single cells, thereby offering a valuable tool for basic research as well as theranostics.
ACS Nano | 2010
Cristiano L. P. Oliveira; Sissel Juul; Hanne Lærke Jørgensen; Bjarne Knudsen; David Tordrup; Francesco Oteri; Mattia Falconi; Jørn Koch; Alessandro Desideri; Jan Skov Pedersen; Felicie F. Andersen; Birgitta R. Knudsen
The assembly, structure, and stability of DNA nanocages with the shape of truncated octahedra have been studied. The cages are composed of 12 double-stranded B-DNA helices interrupted by single-stranded linkers of thymidines of varying length that constitute the truncated corners of the structure. The structures assemble with a high efficiency in a one-step procedure, compared to previously published structures of similar complexity. The structures of the cages were determined by small-angle X-ray scattering. With increasing linker length, there is a systematic increase of the cage size and decrease of the twist angle of the double helices with respect to the symmetry planes of the cage structure. In the present study, we demonstrate the length of the single-stranded linker regions, which impose a certain degree of flexibility to the structure, to be the important determinant for efficient assembly. The linker length can be decreased to three thymidines without affecting assembly yield or the overall structural characteristics of the DNA cages. A linker length of two thymidines represents a sharp cutoff abolishing cage assembly. This is supported by energy minimization calculations suggesting substantial hydrogen bond deformation in a cage with linkers of two thymidines.
ACS Nano | 2010
Ramesh Subramani; Sissel Juul; Alexandru Rotaru; Felicie F. Andersen; Kurt V. Gothelf; Wael Mamdouh; Flemming Besenbacher; Mingdong Dong; Birgitta R. Knudsen
The biologically and clinically important nuclear enzyme human topoisomerase I relaxes both positively and negatively supercoiled DNA and binds consequently DNA with supercoils of positive or negative sign with a strong preference over relaxed DNA. One scheme to explain this preference relies on the existence of a secondary DNA binding site in the enzyme facilitating binding to DNA nodes characteristic for plectonemic DNA. Here we demonstrate the ability of human topoisomerase I to induce formation of DNA synapses at protein containing nodes or filaments using atomic force microscopy imaging. By means of a two-dimensional (2D) DNA origami platform, we monitor the interactions between a single human topoisomerase I covalently bound to one DNA fragment and a second DNA fragment protruding from the DNA origami. This novel single molecule origami-based detection scheme provides direct evidence for the existence of a secondary DNA interaction site in human topoisomerase I and lends further credence to the theory of two distinct DNA interaction sites in human topoisomerase I, possibly facilitating binding to DNA nodes characteristic for plectonemic supercoils.
ACS Nano | 2009
Felicie F. Andersen; Magnus Stougaard; Hanne Lærke Jørgensen; Simon Bendsen; Sissel Juul; Kristoffer Hald; Anni H. Andersen; Jørn Koch; Birgitta R. Knudsen
We previously demonstrated the conversion of a single human topoisomerase I mediated DNA cleavage-ligation event happening within nanometer dimensions to a micrometer-sized DNA molecule, readily detectable using standard fluorescence microscopy. This conversion was achieved by topoisomerase I mediated closure of a nicked DNA circle followed by rolling circle amplification leading to an anchored product that was visualized at the single molecule level by hybridization to fluorescently labeled probes (Stougaard et al. ACS Nano 2009, 3, 223-33). An important inherent property of the presented setup is, at least in theory, the easy adaptability to multiplexed enzyme detection simply by using differently labeled probes for the detection of rolling circle products of different circularized substrates. In the present study we demonstrate the specific detection of three different enzyme activities, human topoisomerase I, and Flp and Cre recombinase in nuclear extracts from human cells one at a time or multiplexed using the rolling circle amplification based single-molecule detection system. Besides serving as a proof-of-principle for the feasibility of the presented assay for multiplexed enzyme detection in crude human cell extracts, the simultaneous detection of Flp and Cre activities in a single sample may find immediate practical use since these enzymes are often used in combination to control mammalian gene expression.
ACS Nano | 2014
Ya-Ling Chiu; Hon Fai Chan; Kyle K. L. Phua; Ying Zhang; Sissel Juul; Birgitta R. Knudsen; Yi-Ping Ho; Kam W. Leong
Microemulsion represents an attractive platform for fundamental and applied biomedical research because the emulsified droplets can serve as millions of compartmentalized micrometer-sized reactors amenable to high-throughput screening or online monitoring. However, establishing stable emulsions with surfactants that are compatible with biological applications remains a significant challenge. Motivated by the lack of commercially available surfactants suitable for microemulsion-based biological assays, this study describes the facile synthesis of a biocompatible fluorosurfactant with nonionic tris(hydroxymethyl)methyl (Tris) polar head groups. We have further demonstrated compatibility of the developed surfactant with diverse emulsion-based applications, including DNA polymeric nanoparticle synthesis, enzymatic activity assay, and bacterial or mammalian cell culture, in the setup of both double- and multiphases of emulsions.
Nucleic Acids Research | 2011
Amanda C. Gentry; Sissel Juul; Christopher Veigaard; Birgitta Ruth Knudsen; Neil Osheroff
Human topoisomerase I plays an important role in removing positive DNA supercoils that accumulate ahead of replication forks. It also is the target for camptothecin-based anticancer drugs that act by increasing levels of topoisomerase I-mediated DNA scission. Evidence suggests that cleavage events most likely to generate permanent genomic damage are those that occur ahead of DNA tracking systems. Therefore, it is important to characterize the ability of topoisomerase I to cleave positively supercoiled DNA. Results confirm that the human enzyme maintains higher levels of cleavage with positively as opposed to negatively supercoiled substrates in the absence or presence of anticancer drugs. Enhanced drug efficacy on positively supercoiled DNA is due primarily to an increase in baseline levels of cleavage. Sites of topoisomerase I-mediated DNA cleavage do not appear to be affected by supercoil geometry. However, rates of ligation are slower with positively supercoiled substrates. Finally, intercalators enhance topoisomerase I-mediated cleavage of negatively supercoiled substrates but not positively supercoiled or linear DNA. We suggest that these compounds act by altering the perceived topological state of the double helix, making underwound DNA appear to be overwound to the enzyme, and propose that these compounds be referred to as ‘topological poisons of topoisomerase I’.
international conference of the ieee engineering in medicine and biology society | 2011
Sissel Juul; Yi-Ping Ho; Magnus Stougaard; Jørn Koch; Felicie F. Andersen; Kam W. Leong; Birgitta R. Knudsen
Conventional analysis of enzymatic activity, often carried out on pools of cells, is blind to heterogeneity in the population. Here, we combine microfluidics with a previously developed isothermal rolling circle amplification-based assay to investigate multiple enzymatic activities in down to single cells. This microfluidics-meditated assay performs at very high sensitivity in picoliter incubators with small quantities of biological materials. Furthermore, we demonstrate the assays capability of multiplexed detection of at least three enzyme activities at the single molecule level.