Sissela Liljeqvist
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sissela Liljeqvist.
Journal of Biotechnology | 1999
Sissela Liljeqvist; Stefan Ståhl
The first scientific attempts to control an infectious disease can be attributed to Edward Jenner, who, in 1796 inoculated an 8-year-old boy with cowpox (vaccinia), giving the boy protection against subsequent challenge with virulent smallpox. Thanks to the successful development of vaccines, many major diseases, such as diphtheria, poliomyelitis and measles, are nowadays kept under control, and in the case of smallpox, the dream of eradication has been fulfilled. Yet, there is a growing need for improvements of existing vaccines in terms of increased efficacy and improved safety, besides the development of completely new vaccines. Better technological possibilities, combined with increased knowledge in related fields, such as immunology and molecular biology, allow for new vaccination strategies. Besides the classical whole-cell vaccines, consisting of killed or attenuated pathogens, new vaccines based on the subunit principle, have been developed, e.g. the Hepatitis B surface protein vaccine and the Haemophilus influenzae type b vaccine. Recombinant techniques are now dominating in the strive for an ideal vaccine, being safe and cheap, heat-stable and easy to administer, preferably single-dose, and capable of inducing broad immune response with life-long memory both in adults and in infants. This review will describe different recombinant approaches used in the development of novel subunit vaccines, including design and production of protein immunogens, the development of live delivery systems and the state-of-the-art for nucleic acids vaccines.
Biotechnology and Applied Biochemistry | 2002
Per Jonasson; Sissela Liljeqvist; Per‐A˚ke Nygren; Stefan Ståhl
Genetic strategies have been used for more than two decades to improve bacterial bioprocesses and to simplify recovery procedures. Such strategies include the design of efficient expression vectors and the improvement of bacterial production strains in different ways, e.g. by deletion of protease genes or engineering for overexpression of rare‐codon tRNAs, foldases or chaperones. Gene multimerization is another such principle that has proved beneficial to improve production yields. Genetic strategies have furthermore been exploited to facilitate recovery processes by adapting the product for a particular purification principle. In this area, affinity fusions have been commonly used, but other principles, such as modified isoelectric point (pI) or hydrophobic properties have also been successfully investigated. A recent drastic step forward in the use of gene technology to improve recovery processes for recombinant proteins is the introduction of combinatorial protein engineering to generate tailor‐made product‐specific affinity ligands. This strategy, which allows efficient recovery of a recombinant protein in its native form, is likely to be increasingly used also in industrial‐scale bioprocesses, since novel protein ligands have been described that can be sanitized using common industrial cleaning‐in‐place procedures. The examples presented in this review make it evident that genetic strategies will be of utmost importance in the future for facilitating production and recovery of recombinant proteins.
Journal of Immunological Methods | 1997
Sissela Liljeqvist; Stefan Ståhl; Christine Andreoni; Hans Binz; Mathias Uhlén; Maria Murby
The cholera toxin B (CTB) subunit has been used extensively in vaccine research as a carrier for peptide immunogens due to its immunopotentiating properties, where coupling has been obtained either by genetic fusion or chemical conjugation. For genetically fused immunogens both N- and C-terminal fusions have been used. Only shorter extensions have previously been evaluated and in some reports these fusions have impaired the biological functions of CTB, such as the ability to form pentamers and to adhere to its cell receptor, the GM1 ganglioside. Here we report the first systematic study where the same fusion partner has been used for either C-terminal, N-terminal or dual fusions to CTB. The serum albumin binding region (BB, approximately 25 kDa) from streptococcal protein G, which is known to fold independently of N- or C-terminal fusions, was selected as fusion partner. The three fusion proteins CTB-BB, BB-CTB and BB-CTB-BB were expressed in Escherichia coli, where they were efficiently secreted to the periplasmic space, and could be purified by affinity chromatography on human serum albumin (HSA) columns. The CTB fusion proteins were compared for their ability to form pentamers, by gel electrophoresis and size-exclusion chromatography, and it was concluded that all three fusion proteins were able to pentamerize. Interestingly, the C-terminal fusion to CTB showed most efficient pentamerization, while the dual fusion was much less efficient. Purified pentamer fractions from all three fusions where found to react to a monoclonal antibody described to react only to pentameric forms of CTB. In addition, the purified pentamer fractions were analyzed in an enzyme-linked immunosorbent assay (ELISA) for their ability to bind GM1, and it was found that the C-terminal fusion (CTB-BB) showed significant GM1-binding, but that also the N-terminal and dual CTB fusion proteins bound GM1, although less efficiently. The implications of the results for the design and use of CTB fusion proteins as subunit vaccines are discussed.
Immunology Letters | 1998
Diana Haddad; Sissela Liljeqvist; Stefan Ståhl; Peter Perlmann; Klavs Berzins; Niklas Ahlborg
The route and method used to immunize mice with antigen-expressing DNA plasmids have an impact on the resulting T-helper cell response and IgG subclass distribution. Previous findings further indicate that the intracellular targeting of expressed antigens influences the differentiation of naive T-cells into either a Th1 or a Th2 type of response. In the present study, we analyzed the levels of IgG1 and IgG2a antibodies, as correlates of Th2 and Th1 responses, respectively, after intramuscular injection of mice with plasmids encoding a chimeric protein containing a Plasmodium falciparum blood stage antigen expressed in two different forms. One plasmid expresses the antigen in a secreted form as it is preceded by a signal sequence while expression from the other plasmid, lacking this sequence, results in cytoplasmic localization of the antigen. Mice immunized with the plasmid encoding secreted antigen responded with predominantly IgG1 antibodies. In contrast, sera from mice immunized with the plasmid expressing cytosolic protein displayed a mixed IgG1/IgG2a profile. In line with previous findings, our results suggest that the intracellular targeting of proteins expressed by DNA plasmids is an important factor for the differentiation of Th cells and the resulting subclass pattern of IgG responses.
Vaccine | 2000
François Cano; Hélène Plotnicky-Gilquin; Thien Ngoc Nguyen; Sissela Liljeqvist; Patrik Samuelson; Jean-Yves Bonnefoy; Stefan Ståhl; Alain Robert
A live bacterial vaccine-delivery system based on the food-grade bacterium Staphylococcus carnosus was used for delivery of peptides from the G glycoprotein of human respiratory syncytial virus, subtype A (RSV-A). Three peptides, corresponding to the G protein amino acids, 144-159 (denoted G5), 190-203 (G9) and 171-188 (G4 S), the latter with four cysteine residues substituted for serines, were expressed by recombinant means as surface-exposed on three different bacteria, and their surface accessibility on the bacteria was verified by fluorescence-activated cell sorting (FACS). Intranasal immunization of mice with the live recombinant staphylococci elicited significant anti-peptide as well as anti-virus serum IgG responses of balanced IgG1/IgG2a isotype profiles, and upon viral challenge with 10(5) tissue culture infectious doses(50) (TCID(50)), lung protection was demonstrated for approximately half of the mice in the G9 and G4 S immunization groups. To our knowledge, this is the first study in which protective immunity to a viral pathogen has been evoked using food-grade bacteria as vaccine-delivery vehicles.
FEBS Letters | 1999
Sissela Liljeqvist; François Cano; Thien Ngoc Nguyen; Mathias Uhlén; Alain Robert; Stefan Ståhl
The surface expression in Staphylococcus carnosus of three different fibronectin binding domains (FNBDs), derived from fibronectin binding proteins of Streptococcus dysgalactiae and Staphylococcus aureus, has been investigated. Surface localization of the chimeric proteins containing the FNBDs was demonstrated. All three surface‐displayed FNBDs were demonstrated to bind fibronectin in whole‐cell enzyme‐linked binding assays. Furthermore, for one of the constructs, intranasal immunizations with the recombinant bacteria resulted in improved antibody responses to a model immunogen present within the chimeric surface proteins. The implications of the results for the design of live bacterial vaccine delivery systems are discussed.
Archive | 1997
Stefan Ståhl; Patrik Samuelson; Marianne Hansson; Christine Andreoni; Liliane Goetsch; Christine Libon; Sissela Liljeqvist; Elin Gunneriusson; Hans Binz; Thien Ngoc Nguyen; Mathias Uhlen
Among the bacteria being considered as live recombinant vaccine vehicles, the most well studied during the past decade are attenuated Salmonella species1 and mycobacterial bacille Calmette-Guerin (BCG) due to their capacity to colonize mucosal surfaces and invade macrophages in the liver, spleen and lymph nodes of the host.2,3 Surface-display of the foreign antigens to be delivered, has in both these systems proven to be beneficial in eliciting an immune response.4–7 The risk of reversion to a virulent phenotype and the potential side-effects in immunocompromised individuals and infants have, however, raised concern of the use of Salmonella or BCG-based recombinant vaccines in humans.8
International Journal of Medical Microbiology | 2000
Stefan Ståhl; Alain Robert; Elin Gunneriusson; Henrik Wernérus; François Cano; Sissela Liljeqvist; Marianne Hansson; Thien Ngoc Nguyen; Patrik Samuelson
Novel surface proteins can be introduced onto the bacterial cell surface by recombinant means. Here, we describe the development of such display systems for two food-grade bacteria, Staphylococcus carnosus and Staphylococcus xylosus, and present how such engineered bacteria can be used in different applications. A study will be described in which such staphylococci were employed as vaccine delivery vehicles to elicit protective antibody responses to respiratory syncytial virus (RSV). The use of surface-engineered staphylococci as novel microbial biocatalysts, as a new type of whole-cell diagnostic devices or for adsorption of metal ions with potential environmental or biosensor applications, will also be discussed.
Applied and Environmental Microbiology | 1997
Sissela Liljeqvist; Patrik Samuelson; Marianne Hansson; Thien Ngoc Nguyen; Hans Binz; Stefan Ståhl
Fems Immunology and Medical Microbiology | 1997
Diana Haddad; Sissela Liljeqvist; Stefan Ståhl; Ingegärd Andersson; Peter Perlmann; Klavs Berzins; Niklas Ahlborg