Sita J. Saunders
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sita J. Saunders.
Nature Reviews Microbiology | 2015
Kira S. Makarova; Yuri I. Wolf; Omer S. Alkhnbashi; Fabrizio Costa; Shiraz A. Shah; Sita J. Saunders; Rodolphe Barrangou; Stan J. J. Brouns; Emmanuelle Charpentier; Daniel H. Haft; Philippe Horvath; Sylvain Moineau; Francisco J. M. Mojica; Rebecca M. Terns; Michael P. Terns; Malcolm F. White; Alexander F. Yakunin; Roger A. Garrett; John van der Oost; Rolf Backofen; Eugene V. Koonin
The evolution of CRISPR–cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR–cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR–Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.
Bioinformatics | 2014
Omer S. Alkhnbashi; Fabrizio Costa; Shiraz A. Shah; Roger A. Garrett; Sita J. Saunders; Rolf Backofen
Motivation: The discovery of CRISPR-Cas systems almost 20 years ago rapidly changed our perception of the bacterial and archaeal immune systems. CRISPR loci consist of several repetitive DNA sequences called repeats, inter-spaced by stretches of variable length sequences called spacers. This CRISPR array is transcribed and processed into multiple mature RNA species (crRNAs). A single crRNA is integrated into an interference complex, together with CRISPR-associated (Cas) proteins, to bind and degrade invading nucleic acids. Although existing bioinformatics tools can recognize CRISPR loci by their characteristic repeat-spacer architecture, they generally output CRISPR arrays of ambiguous orientation and thus do not determine the strand from which crRNAs are processed. Knowledge of the correct orientation is crucial for many tasks, including the classification of CRISPR conservation, the detection of leader regions, the identification of target sites (protospacers) on invading genetic elements and the characterization of protospacer-adjacent motifs. Results: We present a fast and accurate tool to determine the crRNA-encoding strand at CRISPR loci by predicting the correct orientation of repeats based on an advanced machine learning approach. Both the repeat sequence and mutation information were encoded and processed by an efficient graph kernel to learn higher-order correlations. The model was trained and tested on curated data comprising >4500 CRISPRs and yielded a remarkable performance of 0.95 AUC ROC (area under the curve of the receiver operator characteristic). In addition, we show that accurate orientation information greatly improved detection of conserved repeat sequence families and structure motifs. We integrated CRISPRstrand predictions into our CRISPRmap web server of CRISPR conservation and updated the latter to version 2.0. Availability: CRISPRmap and CRISPRstrand are available at http://rna.informatik.uni-freiburg.de/CRISPRmap. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
Bioinformatics | 2016
Omer S. Alkhnbashi; Shiraz A. Shah; Roger A. Garrett; Sita J. Saunders; Fabrizio Costa; Rolf Backofen
MOTIVATION The CRISPR-Cas system is an adaptive immune system in many archaea and bacteria, which provides resistance against invading genetic elements. The first phase of CRISPR-Cas immunity is called adaptation, in which small DNA fragments are excised from genetic elements and are inserted into a CRISPR array generally adjacent to its so called leader sequence at one end of the array. It has been shown that transcription initiation and adaptation signals of the CRISPR array are located within the leader. However, apart from promoters, there is very little knowledge of sequence or structural motifs or their possible functions. Leader properties have mainly been characterized through transcriptional initiation data from single organisms but large-scale characterization of leaders has remained challenging due to their low level of sequence conservation. RESULTS We developed a method to successfully detect leader sequences by focusing on the consensus repeat of the adjacent CRISPR array and weak upstream conservation signals. We applied our tool to the analysis of a comprehensive genomic database and identified several characteristic properties of leader sequences specific to archaea and bacteria, ranging from distinctive sizes to preferential indel localization. CRISPRleader provides a full annotation of the CRISPR array, its strand orientation as well as conserved core leader boundaries that can be uploaded to any genome browser. In addition, it outputs reader-friendly HTML pages for conserved leader clusters from our database. AVAILABILITY AND IMPLEMENTATION CRISPRleader and multiple sequence alignments for all 195 leader clusters are available at http://www.bioinf.uni-freiburg.de/Software/CRISPRleader/ CONTACT [email protected] or [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Journal of Biological Chemistry | 2015
Lisa-Katharina Maier; Aris-Edda Stachler; Sita J. Saunders; Rolf Backofen; Anita Marchfelder
Background: CRISPR RNAs (crRNAs) are generated by Cas6b in type I-B systems. They are essential for the interference reaction. Results: An icrRNA is generated independently from Cas6b and functions like a crRNA. Conclusion: In the presence of an icrRNA, Cas6b is not required for the interference reaction. Significance: This setup allows the Cas6b-independent generation of icrRNAs and thereby interference without Cas6b. The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3′ handle are still active in triggering an interference reaction. The complete 3′ handle could be removed without loss of activity. However, manipulations of the 5′ handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference.
Scientific Reports | 2016
Martin Hölzer; Verena Krähling; Fabian Amman; Emanuel Barth; Stephan H. Bernhart; Victor A. O. Carmelo; Maximilian Collatz; Florian Eggenhofer; Jan Ewald; Jörg Fallmann; Lasse Feldhahn; Markus Fricke; Juliane Gebauer; Andreas J. Gruber; Franziska Hufsky; Henrike Indrischek; Sabina Kanton; Jörg Linde; Nelly Mostajo; Roman Ochsenreiter; Konstantin Riege; Lorena Rivarola-Duarte; Abdullah H. Sahyoun; Sita J. Saunders; Stefan E. Seemann; Andrea Tanzer; Bertram Vogel; Stefanie Wehner; Michael T. Wolfinger; Rolf Backofen
The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.
Nucleic Acids Research | 2017
Viktoria Reimann; Omer S. Alkhnbashi; Sita J. Saunders; Ingeborg Scholz; Stephanie Hein; Rolf Backofen; Wolfgang R. Hess
Abstract A hallmark of defense mechanisms based on clustered regularly interspaced short palindromic repeats (CRISPR) and associated sequences (Cas) are the crRNAs that guide these complexes in the destruction of invading DNA or RNA. Three separate CRISPR-Cas systems exist in the cyanobacterium Synechocystis sp. PCC 6803. Based on genetic and transcriptomic evidence, two associated endoribonucleases, Cas6-1 and Cas6-2a, were postulated to be involved in crRNA maturation from CRISPR1 or CRISPR2, respectively. Here, we report a promiscuity of both enzymes to process in vitro not only their cognate transcripts, but also the respective non-cognate precursors, whereas they are specific in vivo. Moreover, while most of the repeats serving as substrates were cleaved in vitro, some were not. RNA structure predictions suggested that the context sequence surrounding a repeat can interfere with its stable folding. Indeed, structure accuracy calculations of the hairpin motifs within the repeat sequences explained the majority of analyzed cleavage reactions, making this a good measure for predicting successful cleavage events. We conclude that the cleavage of CRISPR1 and CRISPR2 repeat instances requires a stable formation of the characteristic hairpin motif, which is similar between the two types of repeats. The influence of surrounding sequences might partially explain variations in crRNA abundances and should be considered when designing artificial CRISPR arrays.
RNA Biology | 2015
Martin Preusse; Carsten Marr; Sita J. Saunders; Daniel Maticzka; Heiko Lickert; Rolf Backofen; Fabian J. Theis
microRNAs and microRNA-independent RNA-binding proteins are 2 classes of post-transcriptional regulators that have been shown to cooperate in gene-expression regulation. We compared the genome-wide target sets of microRNAs and RBPs identified by recent CLIP-Seq technologies, finding that RBPs have distinct target sets and favor gene interaction network hubs. To identify microRNAs and RBPs with a similar functional context, we developed simiRa, a tool that compares enriched functional categories such as pathways and GO terms. We applied simiRa to the known functional cooperation between Pumilio family proteins and miR-221/222 in the regulation of tumor supressor gene p27 and show that the cooperation is reflected by similar enriched categories but not by target genes. SimiRa also predicts possible cooperation of microRNAs and RBPs beyond direct interaction on the target mRNA for the nuclear RBP TAF15. To further facilitate research into cooperation of microRNAs and RBPs, we made simiRa available as a web tool that displays the functional neighborhood and similarity of microRNAs and RBPs: http://vsicb-simira.helmholtz-muenchen.de.
Nucleic Acids Research | 2017
Jason A. Davis; Sita J. Saunders; Martin Mann; Rolf Backofen
Abstract MicroRNAs (miRNAs) are key regulators of cell-fate decisions in development and disease with a vast array of target interactions that can be investigated using computational approaches. For this study, we developed metaMIR, a combinatorial approach to identify miRNAs that co-regulate identified subsets of genes from a user-supplied list. We based metaMIR predictions on an improved dataset of human miRNA–target interactions, compiled using a machine-learning-based meta-analysis of established algorithms. Simultaneously, the inverse dataset of negative interactions not likely to occur was extracted to increase classifier performance, as measured using an expansive set of experimentally validated interactions from a variety of sources. In a second differential mode, candidate miRNAs are predicted by indicating genes to be targeted and others to be avoided to potentially increase specificity of results. As an example, we investigate the neural crest, a transient structure in vertebrate development where miRNAs play a pivotal role. Patterns of metaMIR-predicted miRNA regulation alone partially recapitulated functional relationships among genes, and separate differential analysis revealed miRNA candidates that would downregulate components implicated in cancer progression while not targeting tumour suppressors. Such an approach could aid in therapeutic application of miRNAs to reduce unintended effects. The utility is available at http://rna.informatik.uni-freiburg.de/metaMIR/.
Archive | 2018
Rolf Backofen; Fabrizio Costa; Fabian J. Theis; Carsten Marr; Martin Preusse; Claude Becker; Sita J. Saunders; Klaus Palme; Oleksandr Dovzhenko
MicroRNAs, gene encoded small RNA molecules, play an integral part in gene regulation by binding to target mRNAs and preventing their translation. The prediction of microRNA–mRNA-binding sites and the resulting interaction network are essential to understand, and thus influence, regulation of a genetic information flow inside the living organism. Numerous algorithms have been proposed based on various heuristics; however the predictions often vary considerably. In this proposal we will extend a physical model for the binding of microRNAs to the corresponding target and establish an extended set of features influencing binding probabilities. We will be faced with the challenge of (i) too many features and (ii) few known interactions on which to train any prediction algorithm. This problem will be solved using (i) information-theoretical criteria for feature reduction, (ii) regularization, (iii) application of the Infomax approach to guarantee minimal loss of information after dimension reduction, and (iv) experimental validation of theoretical predictions using a novel test system. This strategy will allow (i) statistical analysis of the predicted microRNA–mRNA hypergraph, (ii) characterization of network motives and hierarchies, (iii) identification of missing links, and (iv) removal of false interactions.
Scientific Reports | 2017
Martin Hölzer; Verena Krähling; Fabian Amman; Emanuel Barth; Stephan H. Bernhart; Victor A. O. Carmelo; Maximilian Collatz; Florian Eggenhofer; Jan Ewald; Jörg Fallmann; Lasse Feldhahn; Markus Fricke; Juliane Gebauer; Andreas J. Gruber; Franziska Hufsky; Henrike Indrischek; Sabina Kanton; Jörg Linde; Nelly Mostajo; Roman Ochsenreiter; Konstantin Riege; Lorena Rivarola-Duarte; Abdullah H. Sahyoun; Sita J. Saunders; Stefan E. Seemann; Andrea Tanzer; Bertram Vogel; Stefanie Wehner; Michael T. Wolfinger; Rolf Backofen
Scientific Reports 6: Article number: 34589; published online: 07 October 2016; updated: 11 January 2017 In this Article, Ivo Grosse is incorrectly affiliated to “Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany”. The correct affiliations for Ivo Grosse are listed below: