Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sitaram P. Velaga is active.

Publication


Featured researches published by Sitaram P. Velaga.


Pharmaceutical Research | 2008

Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization.

Srinivas Basavoju; Dan Boström; Sitaram P. Velaga

PurposeTo design and prepare cocrystals of indomethacin using crystal engineering approaches, with the ultimate objective of improving the physical properties of indomethacin, especially solubility and dissolution rate.Materials and MethodsVarious cocrystal formers, including saccharin, were used in endeavours to obtain indomethacin cocrystals by slow evaporation from a series of solvents. The melting point of crystalline phases was determined. The potential cocrystalline phase was characterized by DSC, IR, Raman and PXRD techniques. The indomethacin–saccharin cocrystal (hereafter IND–SAC cocrystal) structure was determined from single crystal X-ray diffraction data. Pharmaceutically relevant properties such as the dissolution rate and dynamic vapour sorption (DVS) of the IND–SAC cocrystal were evaluated. Solid state and liquid-assisted (solvent-drop) cogrinding methods were also applied to indomethacin and saccharin.ResultsThe IND–SAC cocrystals were obtained from ethyl acetate. Physical characterization showed that the IND–SAC cocrystal is unique vis-à-vis thermal, spectroscopic and X-ray diffraction properties. The cocrystals were obtained in a 1:1 ratio with a carboxylic acid and imide dimer synthons. The dissolution rate of IND–SAC cocrystal system was considerably faster than that of the stable indomethacin γ-form. DVS studies indicated that the cocrystals gained less than 0.05% in weight at 98%RH. IND–SAC cocrystal was also obtained by solid state and liquid-assisted cogrinding methods.ConclusionsThe IND–SAC cocrystal was formed with a unique and interesting carboxylic acid and imide dimer synthons interconnected by weak N−H⋯O hydrogen bonds. The cocrystals were non-hygroscopic and were associated with a significantly faster dissolution rate than indomethacin (γ-form).


European Journal of Pharmaceutical Sciences | 2009

Formation of indomethacin–saccharin cocrystals using supercritical fluid technology

Luis Padrela; Miguel A. Rodrigues; Sitaram P. Velaga; Henrique A. Matos; Edmundo Gomes de Azevedo

The main objective of the present work is to check the feasibility of supercritical fluid (SCF) technologies in the screening and design of cocrystals (novel crystalline solids). The cocrystal formation tendencies in three different SCF techniques, focusing on distinct supercritical fluid properties - solvent, anti-solvent and atomization enhancer - were investigated. The effect of processing parameters on the cocrystal formation behaviour and particle properties in these techniques was also studied. A recently reported indomethacin-saccharin (IND-SAC) cocrystalline system was our model system. A 1:1 molar ratio of indomethacin (gamma-form) and saccharin was used as a starting material. The SCF techniques employed in the study include the CSS technique (cocrystallization with supercritical solvent), the SAS technique (supercritical anti-solvent), and the AAS technique (atomization and anti-solvent). The resulting cocrystalline phase was identified using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform-Raman (FT-Raman). The particle morphologies and size distributions were determined using scanning electron microscopy (SEM) and aerosizer, respectively. The pure IND-SAC cocrystals were obtained from SAS and AAS processes, whilst partial to no cocrystal formation occurred in the CSS process. However, no remarkable differences were observed in terms of cocrystal formation at different processing conditions in SAS and AAS processes. Particles from CSS processes were agglomerated and large, whilst needle-to-block-shaped and spherical particles were obtained from SAS and AAS processes, respectively. The particle size distribution of these particles was 0.2-5microm. Particulate IND-SAC cocrystals with different morphologies and sizes (nano-to-micron) were produced using supercritical fluid techniques. This work demonstrates the potential of SCF technologies as screening methods for cocrystals with possibilities for particle engineering.


International Journal of Pharmaceutics | 2011

Hansen solubility parameter as a tool to predict cocrystal formation

Mohammad Mohammad; Amjad Alhalaweh; Sitaram P. Velaga

The objective of this study was to investigate whether the miscibility of a drug and coformer, as predicted by Hansen solubility parameters (HSPs), can indicate cocrystal formation and guide cocrystal screening. It was also our aim to evaluate various HSPs-based approaches in miscibility prediction. HSPs for indomethacin (the model drug) and over thirty coformers were calculated according to the group contribution method. Differences in the HSPs between indomethacin and each coformer were then calculated using three established approaches, and the miscibility was predicted. Subsequently, differential scanning calorimetry was used to investigate the experimental miscibility and cocrystal formation. The formation of cocrystals was also verified using liquid-assisted grinding. All except one of the drug-coformers that were predicted to be miscible were confirmed experimentally as miscible. All tested theoretical approaches were in agreement in predicting miscibility. All systems that formed cocrystals were miscible. Remarkably, two new cocrystals of indomethacin were discovered in this study. Though it may be necessary to test this approach in a wide range of different coformer and drug compound types for accurate generalizations, the trends with tested systems were clear and suggest that the drug and coformer should be miscible for cocrystal formation. Thus, predicting the miscibility of cocrystal components using solubility parameters can guide the selection of potential coformers prior to exhaustive cocrystal screening work.


Journal of Pharmacy and Pharmacology | 2010

Bioavailability of indomethacin-saccharin cocrystals

Min Sook Jung; Jeong Soo Kim; Min-Soo Kim; Amjad Alhalaweh; Wonkyung Cho; Sung-Joo Hwang; Sitaram P. Velaga

Objectivesu2002 Pharmaceutical cocrystals are new solid forms with physicochemical properties that appear promising for drug product development. However, the in‐vivo bioavailability of cocrystals has rarely been addressed. The cocrystal of indomethacin (IND), a Biopharmaceutical Classification System class II drug, with saccharin (SAC) has been shown to have higher solubility than IND at all pH. In this study, we aimed to evaluate the in‐vitro dissolution and in‐vivo bioavailability of IND–SAC cocrystals in comparison with IND in a physical mixture and the marketed product Indomee®.


European Journal of Pharmaceutical Sciences | 2009

Preparation of zolmitriptan-chitosan microparticles by spray drying for nasal delivery

Amjad Alhalaweh; Staffan Andersson; Sitaram P. Velaga

The objective of this study was to use spray drying to prepare mucoadhesive dry powders of the antimigraine drug, zolmitriptan, in combination with the natural polymer, chitosan, for nasal administration. The effect of type, molecular weight, and proportion of chitosan on the powder and particle characteristics was also studied. Solutions containing different proportions of chitosans were prepared and spray dried. The chemical stability and content of the drug were determined by HPLC. The morphology and size range of the microparticles were also determined. Solid-state analysis was undertaken using thermal methods (DSC/MDSC and TGA), powder X-ray diffraction (PXRD), and Fourier transform infra-red spectroscopy (FT-IR). The drug release profiles were investigated and the time required to reach maximum solution concentrations (T(max)) was used for comparison. The drug was chemically stable, with a 93-105% loading in the microparticles. The microparticles were spherical with a narrow size distribution, irrespective of the formulation. Phase separation was observed for formulations containing less than 90% (w/w) chitosan, irrespective of the type. In contrast, in the formulation containing 90% (w/w) chitosan, the drug was molecularly dispersed. FT-IR studies showed that the bands corresponding to intermolecular hydrogen bonding were broader and more diffuse when zolmitriptan was amorphous. The formation of a hydrogen bond between drug and chitosans was also observed. T(max) increased as the proportion of chitosan decreased, and was proportional to the molecular weight of the chitosan in the formulation containing 90% (w/w) chitosan. Spray drying is a suitable technique for making mucoadhesive dry powders of zolmitriptan and chitosan for nasal application. The dispersion and release of the drug was affected by the properties and composition of the chitosan.


Molecular Pharmaceutics | 2012

pH-Dependent Solubility of Indomethacin−Saccharin and Carbamazepine−Saccharin Cocrystals in Aqueous Media

Amjad Alhalaweh; Lilly Roy; Naír Rodríguez-Hornedo; Sitaram P. Velaga

Cocrystals constitute an important class of pharmaceutical solids for their remarkable ability to modulate solubility and pH dependence of water insoluble drugs. Here we show how cocrystals of indomethacin-saccharin (IND-SAC) and carbamazepine-saccharin (CBZ-SAC) enhance solubility and impart a pH-sensitivity different from that of the drugs. IND-SAC exhibited solubilities 13 to 65 times higher than IND at pH values of 1 to 3, whereas CBZ-SAC exhibited a 2 to 10 times higher solubility than CBZ dihydrate. Cocrystal solubility dependence on pH predicted from mathematical models using cocrystal K(sp), and cocrystal component K(a) values, was in excellent agreement with experimental measurements. The cocrystal solubility increase relative to drug was predicted to reach a limiting value for a cocrystal with two acidic components. This limiting value is determined by the ionization constants of cocrystal components. Eutectic constants are shown to be meaningful indicators of cocrystal solubility and its pH dependence. The two contributions to solubility, cocrystal lattice and solvation, were evaluated by thermal and solubility determinations. The results show that solvation is the main barrier for the aqueous solubility of these drugs and their cocrystals, which are orders of magnitude higher than their lattice barriers. Cocrystal increase in solubility is thus a result of decreasing the solvation barrier compared to that of the drug. This work demonstrates the favorable properties of cocrystals and strategies that facilitate their meaningful characterization.


Analytical Chemistry | 2008

Near-Infrared Spectroscopy for Cocrystal Screening. A Comparative Study with Raman Spectroscopy

Morten Allesø; Sitaram P. Velaga; Amjad Alhalaweh; Claus Cornett; Morten Rasmussen; Frans van den Berg; Heidi Lopez de Diego; Jukka Rantanen

Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative methods. In the case of saccharin, liquid-assisted cogrinding as well as cocrystallization from solution resulted in a stable 1:1 cocrystalline phase termed IND-SAC cocrystal. For l-aspartic acid, the solution-based method resulted in a polymorphic transition of indomethacin into the metastable alpha form retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis (PCA) was applied. Successful use of NIR/PCA was possible only through the inclusion of a set of reference mixtures of parent and guest molecules representing possible solid-state outcomes from the cocrystal screening. The practical hurdle related to the need for reference mixtures seems to restrict the applicability of NIR spectroscopy in cocrystal screening.


International Journal of Pharmaceutics | 2011

Effect of carrier particle shape on dry powder inhaler performance

Waseem Kaialy; Amjad Alhalaweh; Sitaram P. Velaga; Ali Nokhodchi

The aim of this study was to characterise the aerosolisation properties of salbutamol sulphate (SS) from dry powder inhaler (DPI) formulations containing different carrier products. The difference in the elongation ratio (ER) of the different carriers was highlighted. Different set of carriers, namely commercial mannitol (CM), commercial lactose (CL), cooling crystallised mannitol (CCM), acetone crystallised mannitol (ACM) and ethanol crystallised mannitol (ECM) were used and inspected in terms of size, shape, density, crystal form, flowability, and in vitro aerosolisation performance using Multi Stage Liquid Impinger (MSLI) and Aerolizer inhaler device. Solid-state and morphological characterization showed that CM product was in pure β-form having particles with smaller ER (CM: ER=1.62 ± 0.04) whereas ACM and ECM mannitol particles were in pure α form with higher ER (ACM: ER=4.83 ± 0.18, ECM: ER=5.89 ± 0.19). CCM product crystallised as mixtures of β-form and δ-form and showed the largest variability in terms of particle shape, size, and DPI performance. Linear relationships were established showing that carrier products with higher ER have smaller bulk density (D(b)), smaller tap density (D(t)), higher porosity (P), and poorer flow properties. In vitro aerosolisation assessments showed that the higher the ER of the carrier particles the greater the amounts of SS delivered to lower airway regions indicating enhanced DPI performance. Yet, DPI performance enhancement by increasing carrier ER reached a limit as increasing carrier ER from 4.83±0.18 (ACM) to 5.89±0.19 (ECM) did not significantly alter fine particle fraction (FPF) of SS. Also, carrier particles with higher ER were disadvantageous in terms of higher amounts of SS remained in inhaler device (drug loss) and deposited on throat. Linear relationship was established (r(2)=0.87) showing that the higher the carrier ER the lower the drug emission (EM) upon inhalation. Moreover, poorer flowability for carrier products with higher ER is disadvantageous in terms of DPI formulation dose metering and processing on handling scale. In conclusion, despite that using carrier particles with higher ER can considerably increase the amounts of drug delivered to lower airway regions; this enhancement is restricted to certain point. Also, other limitations should be taken into account including higher drug loss and poorer flowability.


Chemical Communications | 2012

Identifying the intermolecular hydrogen-bonding supramolecular synthons in an indomethacin–nicotinamide cocrystal by solid-state NMR

Keisuke Maruyoshi; Dinu Iuga; Oleg N. Antzutkin; Amjad Alhalaweh; Sitaram P. Velaga; Steven P. Brown

Two-dimensional (1)H double-quantum and (14)N-(1)H & (1)H-(13)C heteronuclear magic-angle spinning (MAS) NMR spectra recorded at natural isotopic abundance identify specific intermolecular COOH···N(arom) and CH(arom)···O=C hydrogen-bonding interactions in the solid-state structure of an indomethacin-nicotinamide cocrystal, thus additionally proving cocrystal formation.


Aaps Pharmscitech | 2013

Theophylline cocrystals prepared by spray drying: Physicochemical properties and aerosolization performance

Amjad Alhalaweh; Waseem Kaialy; Graham Buckton; Hardyal Gill; Ali Nokhodchi; Sitaram P. Velaga

The purpose of this work was to characterize theophylline (THF) cocrystals prepared by spray drying in terms of the physicochemical properties and inhalation performance when aerosolized from a dry powder inhaler. Cocrystals of theophylline with urea (THF-URE), saccharin (THF-SAC) and nicotinamide (THF-NIC) were prepared by spray drying. Milled THF and THF-SAC cocrystals were also used for comparison. The physical purity, particle size, particle morphology and surface energy of the materials were determined. The in vitro aerosol performance of the spray-dried cocrystals, drug-alone and a drug-carrier aerosol, was assessed. The spray-dried particles had different size distributions, morphologies and surface energies. The milled samples had higher surface energy than those prepared by spray drying. Good agreement was observed between multi-stage liquid impinger and next-generation impactor in terms of assessing spray-dried THF particles. The fine particle fractions of both formulations were similar for THF, but drug-alone formulations outperformed drug-carrier formulations for the THF cocrystals. The aerosolization performance of different THF cocrystals was within the following rank order as obtained from both drug-alone and drug-carrier formulations: THF-NICu2009>u2009THF-UREu2009>u2009THF-SAC. It was proposed that micromeritic properties dominate over particle surface energy in terms of determining the aerosol performance of THF cocrystals. Spray drying could be a potential technique for preparing cocrystals with modified physical properties.

Collaboration


Dive into the Sitaram P. Velaga's collaboration.

Top Co-Authors

Avatar

Amjad Alhalaweh

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Srinivas Basavoju

National Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Parameswara Rao Vuddanda

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar

Manishkumar R. Shimpi

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oleg N. Antzutkin

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Padrela

Instituto Superior Técnico

View shared research outputs
Researchain Logo
Decentralizing Knowledge