Siti Suri Arshad
Universiti Putra Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siti Suri Arshad.
Journal of Virological Methods | 2000
Chiew Ling Kho; M.L Mohd-Azmi; Siti Suri Arshad; Khatijah Yusoff
A sensitive and specific RT-nested PCR coupled with an ELISA detection system for detecting Newcastle disease virus is described. Two nested pairs of primer which were highly specific to all the three different pathotypes of NDV were designed from the consensus fusion gene sequence. No cross-reactions with other avian infectious agents such as infectious bronchitis virus, infectious bursal disease virus, influenza virus, and fowl pox virus were observed. Based on agarose electrophoresis detection, the RT-nested PCR was about 100 times more sensitive compared to that of a non-nested RT-PCR. To facilitate the detection of the PCR product, an ELISA detection method was then developed to detect the amplified PCR products and it was shown to be ten times more sensitive than gel electrophoresis. The efficacy of the nested PCR-ELISA was also compared with the conventional NDV detection method (HA test) and non-nested RT-PCR by testing against a total of 35 tissue specimens collected from ND-symptomatic chickens. The RT-nested PCR ELISA found NDV positive in 21 (60%) tissue specimens, while only eight (22.9%) and two (5.7%) out of 35 tissue specimens were tested NDV positive by both the non-nested RT-PCR and conventional HA test, respectively. Due to its high sensitivity for the detection of NDV from tissue specimens, this PCR-ELISA based diagnostic test may be useful for screening large number of samples.
Epidemiology and Infection | 2011
A. R. Sohayati; Latiffah Hassan; S. H. Sharifah; K. Lazarus; C. M. Zaini; Jonathan H. Epstein; N. Shamsyul Naim; Hume E. Field; Siti Suri Arshad; J. Abdul Aziz; Peter Daszak
This study aimed to describe the transmission dynamics, the serological and virus excretion patterns of Nipah virus (NiV) in Pteropus vampyrus bats. Bats in captivity were sampled every 7-21 days over a 1-year period. The data revealed five NiV serological patterns categorized as high and low positives, waning, decreasing and increasing, and negative in these individuals. The findings strongly suggest that NiV circulates in wild bat populations and that antibody could be maintained for long periods. The study also found that pup and juvenile bats from seropositive dams tested seropositive, indicating that maternal antibodies against NiV are transmitted passively, and in this study population may last up to 14 months. NiV was isolated from the urine of one bat, and within a few weeks, two other seronegative bats seroconverted. Based on the temporal cluster of seroconversion, we strongly believe that the NiV isolated was recrudesced and then transmitted horizontally between bats during the study period.
Clinical & Developmental Immunology | 2015
Faruku Bande; Siti Suri Arshad; Mohd Hair Bejo; Hassan Moeini; Abdul Rahman Omar
Avian infectious bronchitis (IB) is a widely distributed poultry disease that has huge economic impact on poultry industry. The continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to virulence, neutralization by the maternal antibodies, and recombination and mutation events are important concern on their usage. On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes.
Veterinary Medicine International | 2010
Saeed Sharif; Siti Suri Arshad; M. Hair-Bejo; Abdul Rahman Omar; Nazariah Allaudin Zeenathul; Amer Alazawy
Feline coronaviruses (FCoVs) are found throughout the world. Infection with FCoV can result in a diverse range of signs from clinically inapparent infections to a highly fatal disease called feline infectious peritonitis (FIP). FIP is one of the most serious viral diseases of cats. While there is neither an effective vaccine, nor a curative treatment for FIP, a diagnostic protocol for FCoV would greatly assist in the management and control of the virus. Clinical findings in FIP are non-specific and not helpful in making a differential diagnosis. Haematological and biochemical abnormalities in FIP cases are also non-specific. The currently available serological tests have low specificity and sensitivity for detection of active infection and cross-react with FCoV strains of low pathogenicity, the feline enteric coronaviruses (FECV). Reverse transcriptase polymerase chain reaction (RT-PCR) has been used to detect FCoV and is rapid and sensitive, but results must be interpreted in the context of clinical findings. At present, a definitive diagnosis of FIP can be established only by histopathological examination of biopsies. This paper describes and compares diagnostic methods for FCoVs and includes a brief account of the virus biology, epidemiology, and pathogenesis.
BMC Veterinary Research | 2012
Faruku Bande; Siti Suri Arshad; Latiffah Hassan; Zunita Zakaria; Nurul Asyikin Sapian; Noor Alimah Rahman; Amer Alazawy
BackgroundFeline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) are major causes of morbidity and mortality in domestic and wild felids. Despite the clinical importance of feline retroviruses and the growing interest in cats as pets, information about FeLV and FIV in Malaysia is presently insufficient to properly advise veterinarians and pet owners. A cross-sectional study was carried out from January 2010 to December 2010 to determine the prevalence and risk factors associated with FeLV and FIV among domestic cats in peninsular Malaysia. Plasma samples were harvested from the blood of 368 domestic cats and screened for evidence of FeLV p27 antigen and FIV antibodies, using an immunochromatographic kit. Additionally, data on cat demographics and health were collected using a structured questionnaire, and were evaluated as potential risk factors for FeLV or FIV status.ResultsOf the 368 cats that were evaluated in this study, 12.2% (45/368; 95% CI = 8.88 - 15.58) were positive for FeLV p27 antigen, 31.3%, (115/368; 95% CI = 26.51 - 35.99) were seropositive to FIV antibodies, and 4.3% (16/368; 95% CI = 2.27 - 6.43) had evidence of both viruses. Factors found to significantly increase the risk for FeLV seropositivity include sex, age, behaviour, sickness, and living in a multi-cat household. Seropositive response to FIV was significantly associated with sex, neuter status, age, behaviour, and health status.ConclusionsThe present study indicates that FeLV and FIV are common among domestic cats in peninsular Malaysia, and that factors related to cat demographics and health such as age, sex, behaviour, health status and type of household are important predictors for seropositive status to FeLV or FIV in peninsular Malaysia. High prevalence of FeLV or FIV observed in our study is of concern, in view of the immunosuppressive potentials of the two pathogens. Specific measures for control and prevention such as screening and routine vaccination are needed to ensure that FeLV and FIV are controlled in the cat population of peninsular Malaysia.
Journal of Feline Medicine and Surgery | 2009
Saeed Sharif; Siti Suri Arshad; M. Hair-Bejo; Abdul Rahman Omar; Nazariah Allaudin Zeenathul; Mohd Afzal Hafidz
The prevalence of feline coronavirus (FCoV) was studied in two catteries in Malaysia. Rectal swabs or faecal samples were collected from a total of 44 clinically healthy Persian purebred and mix-breed cats. RNA extracted from the faecal material was subjected to a reverse transcription-polymerase chain reaction (RT-PCR) using primers flanking for a conserved region of the virus genome. The overall prevalence of FCoV infection was 84% and the infection rate was higher in Persian purebred cats (96%) than mix-breed cats (70%). There was no significant association between the age or gender of tested cats and shedding the virus. This study is the first PCR-based survey for FCoV in Malaysia and showed the ubiquitous presence of FCoV in Malaysian cat colonies.
Advances in Virology | 2016
Faruku Bande; Siti Suri Arshad; Abdul Rahman Omar; Mohd Hair Bejo; Muhammad Salisu Abubakar
Infectious bronchitis (IB) is one of the major economically important poultry diseases distributed worldwide. It is caused by infectious bronchitis virus (IBV) and affects both galliform and nongalliform birds. Its economic impact includes decreased egg production and poor egg quality in layers, stunted growth, poor carcass weight, and mortality in broiler chickens. Although primarily affecting the respiratory tract, IBV demonstrates a wide range of tissues tropism, including the renal and reproductive systems. Thus, disease outcome may be influenced by the organ or tissue involved as well as pathotypes or strain of the infecting virus. Knowledge on the epidemiology of the prevalent IBV strains in a particular region is therefore important to guide control and preventions. Meanwhile previous diagnostic methods such as serology and virus isolations are less sensitive and time consuming, respectively; current methods, such as reverse transcription polymerase chain reaction (RT-PCR), Restriction Fragment Length Polymorphism (RFLP), and sequencing, offer highly sensitive, rapid, and accurate diagnostic results, thus enabling the genotyping of new viral strains within the shortest possible time. This review discusses aspects on pathogenesis and diagnostic methods for IBV infection.
Virology Journal | 2013
Mohammad Syamsul Reza Harun; Choong Oi Kuan; Gayathri Thevi Selvarajah; Tan Sheau Wei; Siti Suri Arshad; Mohd Hair Bejo; Abdul Rahman Omar
BackgroundFeline Infectious Peritonitis (FIP) is a lethal systemic disease, caused by the FIP Virus (FIPV); a virulent mutant of Feline Enteric Coronavirus (FECV). Currently, the viruses virulence determinants and host gene expressions during FIPV infection are not fully understood.MethodsRNA sequencing of Crandell Rees Feline Kidney (CRFK) cells, infected with FIPV strain 79–1146 at 3 hours post infection (h.p.i), were sequenced using the Illumina next generation sequencing approach. Bioinformatic’s analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench mapped both control and infected cell reads to 18899 genes out of 19046 annotated genes. Kal’s Z test statistical analysis was used to analyse the differentially expressed genes from the infected CRFK cells. Real time RT-qPCR was developed for further transcriptional profiling of three genes (PD-1, PD-L1 and A3H) in infected CRFK cells and Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diseased cats.ResultsBased on Kal’s Z-test, with False Discovery Rate (FDR) <0.05 and >1.99 fold change on gene expressions, a total of 61 genes were differentially expressed by both samples, where 44 genes were up-regulated and the remainder were down-regulated. Most genes were closely clustered together, suggesting a homogeneous expression. The majority of the genes that were significantly regulated, were those associated with monocytes-macrophage and Th1 cell functions, and the regulation of apoptosis. Real time RT-qPCR developed focusing on 2 up-regulated genes (PD-L1 and A3H) together with an apoptosis associated gene PD-1 expressions in FIPV infected CRFK cells and in PBMCs from healthy and FIP diagnosed cats produced concordant results with transcriptome data.ConclusionThe possible roles of these genes, and their importance in feline coronaviruses infection, are discussed.
Journal of Cardiology | 2012
Mohd Hafiz Ngoo Abdullah; Zulhabri Othman; Hamdan Mohd Noor; Siti Suri Arshad; Ahmad Khairuddin Mohd Yusof; Rahman Jamal; Abdul Rashid Abdul Rahman
The molecular basis of coronary artery disease (CAD) has been widely studied in the western world but there is no published work on the Malaysian population. This study looked at the global gene expression profiling of the peripheral blood of patients with CAD from the 3 main ethnic groups in Malaysia. Male subjects selected were based on angiographically confirmed CAD (≥50% stenosis) and normal control subjects (0% stenosis) with age range of 55.6±5.3 and 51.0±5.5 years, respectively. The global gene expression of 12 angiographically documented CAD patients and 11 matched control subjects were performed. The combined group samples identified 6 up regulated differential expression (DE) genes (GHRL, LTA, CBS, HP, ITGA2B, and OLR1) and 12 down regulated DE genes (IL18R1, ITGA2B, IL18RAP, HP, OLR1, SOD2 ITGB3, IL1B, MMP9, PLA2G7, UTS2, and CBS) to be involved in CAD at the fold change of 1.3 with fault discovery rate (FDR) of 1%. Three genes, MMP9, IL1B, and SOD2 were down regulated in all the 3 ethnic groups making them potential biomarker candidates for CAD across all three ethnicities. Further verification in a cohort study is needed.
Journal of Nanomaterials | 2015
Faruku Bande; Siti Suri Arshad; Mohd Hair Bejo; Shafiu Abdullahi Kamba; Abdul Rahman Omar
Nonviral delivery system receives attention over the last decade. Chitosan (CS) is a cationic polymer whereas saponin (SP) is classified as glycoside. In this study, a spherically-shaped CS-SP nanoparticle was synthesized and characterized. The ability of the nanoparticle to protect DNA from enzymatic degradation, its thermostability and cytotoxicity were evaluated. The particle size was found below 100 nmas determined by Zetasizer, transmission electron microscopy (TEM), and field scanning electron microscopy (FSEM) results. The surface charge ranges from 43.7 mV to 38.5 mV before and after encapsulation with DNA plasmid, respectively. In terms of thermostability, Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) revealed that CS-SP nanoparticle had a melting temperature of 110 °C, with rapid decomposition occurring at 120 °C. Encapsulation of DNA with the synthesized nanoparticle was evidenced by changes in the FTIR spectra including characteristic peaks at 3267.39 and 1635.58 cm-1, wave numbers. Additional peak was also observed at 1169.7 cm-1 following encapsulation. Electrophoretic mobility showed that CS-SP nanoparticle protected plasmid DNA from enzymatic degradation, while cell viability assays confirmed that the synthesized nanoparticle exhibited low cytotoxicity at different concentrations in avian cells. Taken together these, CS-SP nanoparticle showed potentials for applications as a DNA delivery system.