Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sıtkı Baytak is active.

Publication


Featured researches published by Sıtkı Baytak.


Talanta | 2005

The use of Agrobacterium tumefacients immobilized on Amberlite XAD-4 as a new biosorbent for the column preconcentration of iron(III), cobalt(II), manganese(II) and chromium(III).

Sıtkı Baytak; A. Rehber Türker

A microorganism Agrobacterium tumefacients as an immobilized cell on a solid support was presented as a new biosorbent for the enrichment of Fe(III), Co(II), Mn(II) and Cr(III) prior to flame atomic absorption spectrometric analysis. Amberlite XAD-4 was used as a support material for column preconcentration. Various parameters such as pH, amount of adsorbent, eluent type and volume, flow rate of sample solution, volume of sample solution and matrix interference effect on the retention of the metal ions have been studied. The optimum pH for the sorption of above mentioned metal ions were about 6, 8, 8 and 6, respectively. The loading capacity of adsorbent for Co(II) and Mn(II) were found to be 29 and 22mumolg(-1), respectively. The recoveries of Fe(III), Co(II), Mn(II) and Cr(III), under the optimum conditions were found to be 99 +/- 3, 99 +/- 2, 98 +/- 3 and 98 +/- 3%, respectively, at the 95% confidence level. The limit of detection was 3.6, 3.0, 2.8 and 3.6ngml(-1) for Fe(III), Co(II), Mn(II) and Cr (III), respectively, by applying a preconcentration factor of 25. The proposed enrichment method was applied for metal ion determination from water samples, alloy samples, infant foods and certified samples such as whey powder (IAEA-155) and aluminum alloy (NBS SRM 85b). The analytes were determined with a relative error lower than 10% in all samples.


Separation Science and Technology | 2006

Separation/Preconcentration of Zn(II), Cu(II), and Cd(II) by Saccharomyces carlsbergensis Immobilized on Silica Gel 60 in Various Samples

Sıtkı Baytak; Erdal Kendüzler; A. Rehber Türker

Abstract This study presents a solid phase extraction procedure based on column biosorption of Zn(II), Cu(II), and Cd(II) ions on Saccharomyces carlsbergensis immobilized on silica gel 60. The analytes were determined by flame atomic absorption spectrometry (FAAS). The optimum conditions for the quantitative recovery of the analytes, including pH, amount of solid‐phase, eluent type and flow rate of sample solution were examined. The effect of interfering ions on the recovery of the analytes was also investigated. Under the optimum conditions, recoveries of Zn(II), Cu(II), and Cd(II) were 99±2%, 98±2%, and 100±2% at 95% confidence level, respectively for spiked water samples. The analytical detection limits for Zn(II), Cu(II), and Cd(II) were 1.14, 1.66, and 1.48 ng mL−1, respectively. The validation of the method was checked by the analysis of standard reference material (Tea leaves GBW‐07605) and spiked water, samples. The proposed method was applied for the determination of analytes in green onion, parsley, dam water, lake water, and tap water samples. The analytes has been determined in real samples with relative error lower than 8% and relative standard deviation lower than 10%.


Journal of Analytical Chemistry | 2006

Atomic absorption spectrometric determination of Fe(III) and Cr(III) in various samples after preconcentration by solid-phase extraction with pyridine-2-carbaldehyde thiosemicarbazone

Sıtkı Baytak; A. Balaban; Ali Rehber Türker; B. Erk

An atomic absorption spectrometric method for the determination of Fe(III) and Cr(III) after solid-phase extraction of their Schiff-base chelates by a column procedure with Amberlite XAD-4 was developed. A Schiff base, pyridine-2-carbaldehyde thiosemicarbazone (PCTSC), was synthesized and used as a chromogenic reagent for solid-phase extraction of Fe(III) and Cr(III) ions in the column procedure. The influence of various analytical parameters including the amount of solid phase, pH, type of elution solution, volume of sample solution, and flow rate of sample solution on the extraction efficiency of analytes were investigated. The recoveries of Fe(III) and Cr(III) were 99 ± 1 and 98 ± 2%, respectively, at the 95% confidence level under the optimum conditions. Fe(III) and Cr(III) were preconcentrated up to 25-fold. The limit of detection of Fe(III) and Cr(III) are 4.1 and 3.72 µg/L, respectively. The proposed method was applied to the determination of these metal ions in tap water, river water, Atatürk Dam water, and alloy samples. The relative standard deviation and the relative error are lower than 6%.


Journal of Analytical Chemistry | 2006

Application of ram horn powder (RHP) for the preconcentration and determination of copper in various samples by flame atomic absorption spectrometry

Sıtkı Baytak; Ali Rehber Türker

The use of ram horn powder (RHP) as a new sorbent for the preconcentration of copper(II) was proposed. The procedure is based on the adsorption of copper(II) ions as 1-nitroso-2-naphthol-3,6-disulfonic acid chelate onto the minicolumn packed with RHP followed by the elution with 5 mL 1 M HCl and determination by flame atomic absorption spectrometry (FAAS). Analytical variables such as pH, eluent type, flow rate, and sample volume were optimized, and analytical parameters such as accuracy and limit of detection were studied. The optimum pH of the sample solution was found to be in a range of 4–8. The enrichment factor when using a sample volume of 500 mL was 100. The capacity of the sorbent was found to be 1.7 mg/g. The limit of detection for copper(II) was 0.42 μg/L. The accuracy of the method was confirmed by analyzing the lead base alloy and aluminum base alloy (NBS SRM 53e, NBS SRM 85b). The results demonstrated good agreement with the certified values. The procedure was applied to the determination of copper in aluminum foil and different waters, such as tap water, lake water, dam water, and synthetic seawater samples.


International Journal of Environmental Analytical Chemistry | 2014

Determination of Cu(II), Fe(III), Mn(II) and Zn(II) in various samples after preconcentration with Rhizopus oryzae loaded natural cellulose (almond bark)

Sıtkı Baytak; Ali Rehber Türker

A procedure for the pre-concentration of Cu(II), Fe(III), Mn(II) and Zn(II) is described utilising a minicolumn of natural cellulose (almond bark) modified with fungus (Rhizopus oryzae) prior to their determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). The optimum pre-concentration conditions such as pH and flow rate for the analytes have been investigated. The analytes were quantitatively retained on the column between pH 6 and 8. Elution was made with 10 mL 1 M HCl solution. Under the optimum conditions, recoveries were found as 97 ± 3%, 96 ± 3%, 98 ± 3% and 94 ± 2% for Cu(II), Fe(III), Mn(II) and Zn(II), respectively, at 95% confidence level. The detection limits obtained from preconcentration of 50 mL of blank solutions (n = 11) were 1.6, 1.8, 2.8 and 1.2 µg L−1 for Cu(II), Fe(III), Mn(II) and Zn(II), respectively. Relative standard deviations (RSD) of the recoveries for five replicate analyses were lower than 3%. The proposed method was validated by analysing certified reference materials (Peach Leaves SRM 1547 and Fish Tissue IAEA-407). Determination of the Cu(II), Fe(III), Mn(II) and Zn(II) in Kızılırmak River water, green beans, beans leave and tomato leaves and fish (Tinca tinca) tissue samples was performed by the proposed method.


Analytical Letters | 2017

Preconcentration and Determination of Copper(II) by Novel Solid-Phase Extraction and High-Resolution Continuum Source Flame Atomic Absorption Spectrometry

Sıtkı Baytak; Veli T. Kasumov

ABSTRACT Amberlite XAD-4 modified with N-para-anisidine-3,5-di-tert-butylsalicylaldimine was investigated as a new chealting sorbent for the selective separation and preconcentration of Cu(II). The metal ion was retained by chemical sorption on the modified resin, eluted by hydrochloric acid, and determined by high-resolution continuum source flame atomic absorption spectrometry. The prepared resin was characterized for the solid-phase extraction of Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Mn2+, Ni2+, Pb2+, and Zn2+ in a column. The influence of the pH, the mass of solid phase, eluent, flow rate, and sample volume was optimized. Using the optimum conditions, only Cu(II) showed quantitative sorption at the 95% confidence level, and the recoveries of the other metal ions were below 80%. A preconcentration factor 125 was obtained for Cu(II) with a limit of detection of 0.56 µg L−1. The method was used for the determination of Cu(II) in tap water, river water, tomato leaves, and fish. The relative standard deviation and the relative error were lower than 7%.


Journal of Analytical Science and Technology | 2018

Mucor pusillus immobilized Amberlite XAD-4 biocomposites for preconcentration of heavy metal ions by solid-phase extraction method

Sıtkı Baytak; Abdul Majid Channa; Ebru Çamuroğlu

BackgroundSolid phase extraction has been an effective tool for the determination of metal ions at trace or sub trace level from environmental aquatic streams. Sensitivity, accuracy, versatility and reusability of adsorbent entitle the solid phase as effective technique for the determination of metal ions.MethodsA solid phase extraction procedure has been described for the determination of Cd, Cu, and Pb by High Resolution–Continuum Source Flame Atomic Absorption Spectrometry HR-CS FAAS using a mini-column of Mucor pusillus (Lindt., 1886) immobilized on Amberlite XAD-4. Method has been optimized by changing the pH of analyte solution, solid phase dosage, volume of eluents, flow rate of sample solution and volume of the sample solutions.ResultsThe recoveries of Cd, Cu, and Pb under the optimum conditions were 99±3%, 97±2% and 96±2%, respectively. The resulting preconcentration procedure ensured a 50-fold improvement in the sensitivity of the elements. The detections limits were 62, 74 and 235 ng/mL for Cd, Cu, and Pb before enrichment, respectively. The method was validated by analysis of tomato leaves reference materials (SRM 1573a).ConclusionsThe proposed enrichment method has been successfully applied for the determination of Cd, Cu, and Pb in tomato leaves and water samples with a relative error ≤8%. This method is simple, sensitive, and accurate especially for water sample, only 200 mg of sorbent are required to capture the analytes. It can be concluded that the use of Mucor pusillus (Lindt., 1886) enhanced the sorption ability of Amberlite XAD-4 resin for the retention of Cd, Cu, and Pb.


Journal of Hazardous Materials | 2006

Determination of lead and nickel in environmental samples by flame atomic absorption spectrometry after column solid-phase extraction on Ambersorb-572 with EDTA.

Sıtkı Baytak; A. Rehber Türker


Mikrochimica Acta | 2005

Determination of Iron(III), Cobalt(II) and Chromium(III) in Various Water Samples by Flame Atomic Absorption Spectrometry After Preconcentration by Means of Saccharomyces Carlsbergensis Immobilized on Amberlite XAD-4

Sıtkı Baytak; A. Rehber Türker


Journal of Separation Science | 2005

Application of silica gel 60 loaded with Aspergillus niger as a solid phase extractor for the separation/preconcentration of chromium(III), copper(II), zinc(II), and cadmium(II).

Sıtkı Baytak; Ali Rehber Türker; Bekir Sıtkı Çevrimli

Collaboration


Dive into the Sıtkı Baytak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge