Siu Kwan Sze
Nanyang Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siu Kwan Sze.
Molecular & Cellular Proteomics | 2010
Jung Eun Park; Hon Sen Tan; Arnab Datta; Ruenn Chai Lai; Huoming Zhang; Wei Meng; Sai Kiang Lim; Siu Kwan Sze
Under hypoxia, tumor cells produce a secretion that modulates their microenvironment to facilitate tumor angiogenesis and metastasis. Here, we observed that hypoxic or reoxygenated A431 carcinoma cells exhibited enhanced angiogenic and metastatic potential such as reduced cell-cell and cell-extracellular matrix adhesion, increased invasiveness, and production of a secretion with increased chorioallantoic membrane angiogenic activity. Consistent with these observations, quantitative proteomics revealed that under hypoxia the tumor cells secreted proteins involved in angiogenesis, focal adhesion, extracellular matrix-receptor interaction, and immune cell recruitment. Unexpectedly, the secreted proteins were predominantly cytoplasmic and membrane proteins. Ultracentrifugation at 100,000 × g precipitated 54% of the secreted proteins and enriched for many exosome-associated proteins such as the tetraspanins and Alix and also proteins with the potential to facilitate angiogenesis and metastasis. Two tetraspanins, CD9 and CD81, co-immunoprecipitated. Together, these data suggested that tumor cells secrete proteins and exosomes with the potential to modulate their microenvironment and facilitate angiogenesis and metastasis.
Journal of Biological Chemistry | 2006
Qiang Wu; Xi Chen; Jinqiu Zhang; Yuin-Han Loh; Teck Yew Low; Weiwei Zhang; Wensheng Zhang; Siu Kwan Sze; Bing Lim; Huck-Hui Ng
Embryonic stem (ES) cells are pluripotent cells with self-renewing property. Nanog is a homeobox transcription factor required to maintain ES cells in a non-differentiated state. Using affinity purification coupled to liquid chromatography-tandem mass spectrometry analysis, we identified Sall4 as a Nanog co-purified protein. Co-immunoprecipitation and glutathione S-transferase pulldown experiments confirmed the interaction between Nanog and Sall4. We showed that Nanog and Sall4 co-occupied Nanog and Sall4 enhancer regions in living ES cells. Knockdown of Nanog or Sall4 by RNA interference led to a reduction in Nanog and Sall4 enhancer activities, providing evidence that these factors are positively regulating these enhancers. Importantly, co-transfection of Sall4 with these ES cell-specific enhancers led to transactivation in heterologous somatic cells. Chromatin immunoprecipitation experiments also showed that Sall4 co-occupied many Nanog binding sites in ES cells. Our data implicate Sall4 as an important component of the transcription regulatory networks in ES cells by cooperating with Nanog. We suggest that Sall4 and Nanog form a regulatory circuit similar to that of Oct4 and Sox2. This study highlights the extensive regulatory loops connecting genes, which encode for key transcription factors in ES cells.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Siu Kwan Sze; Ying Ge; Han Bin Oh; Fred W. McLafferty
A mass difference between the measured molecular weight of a protein and that of its DNA-predicted sequence indicates sequence errors and/or posttranslational modifications. In the top-down mass spectrometry approach, the measured molecular ion is dissociated, and these fragment masses are matched against those predicted from the protein sequence to restrict the locations of the errors/modifications. The proportion of the ions interresidue bonds that are cleaved determines the specificity of such locations; previously, ubiquitin (76 residues) was the largest for which all such bonds were dissociated. Now, cleavages are achieved for carbonic anhydrase at 250 of the 258 interresidue locations. Cleavages of three spectra would define posttranslational modifications at 235 residues to within one residue. For 24 of the 34 possible phosphorylation sites, the cleavages of one spectrum would delineate exactly all −PO3H substitutions. This result has been achieved with electron-capture dissociation by minimizing the further cleavage of primary product ions and by denaturing the tertiary noncovalent bonding of the molecular ions under a variety of conditions.
Molecular & Cellular Proteomics | 2007
Siu Kwan Sze; Dominique P.V. de Kleijn; Ruenn Chai Lai; Eileen Khia Way Tan; Hui Zhao; Keng Suan Yeo; Teck Yew Low; Qizhou Lian; Chuen Neng Lee; Wayne Mitchell; Reida Menshawe El Oakley; Sai Kiang Lim
Transplantation of mesenchymal stem cells (MSCs) has been used to treat a wide range of diseases, and the mechanism of action is postulated to be mediated by either differentiation into functional reparative cells that replace injured tissues or secretion of paracrine factors that promote tissue repair. To complement earlier studies that identified some of the paracrine factors, we profiled the paracrine proteome to better assess the relevance of MSC paracrine factors to the wide spectrum of MSC-mediated therapeutic effects. To evaluate the therapeutic potential of the MSC paracrine proteome, a chemically defined serum-free culture medium was conditioned by MSCs derived from human embryonic stem cells using a clinically compliant protocol. The conditioned medium was analyzed by multidimensional protein identification technology and cytokine antibody array analysis and revealed the presence of 201 unique gene products. 86–88% of these gene products had detectable transcript levels by microarray or quantitative RT-PCR assays. Computational analysis predicted that these gene products will significantly drive three major groups of biological processes: metabolism, defense response, and tissue differentiation including vascularization, hematopoiesis, and skeletal development. It also predicted that the 201 gene products activate important signaling pathways in cardiovascular biology, bone development, and hematopoiesis such as Jak-STAT, MAPK, Toll-like receptor, transforming growth factor-β, and mTOR (mammalian target of rapamycin) signaling pathways. This study identified a large number of MSC secretory products that have the potential to act as paracrine modulators of tissue repair and replacement in diseases of the cardiovascular, hematopoietic, and skeletal tissues. Moreover our results suggest that human embryonic stem cell-derived MSC-conditioned medium has the potency to treat a variety of diseases in humans without cell transplantation.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Han Bin Oh; Kathrin Breuker; Siu Kwan Sze; Ying Ge; Barry K. Carpenter; Fred W. McLafferty
Over the last decade a variety of MS measurements, such as H/D exchange, collision cross sections, and electron capture dissociation (ECD), have been used to characterize protein folding in the gas phase, in the absence of solvent. To the extensive data already available on ubiquitin, here photofragmentation of its ECD-reduced (M + nH)(n−1)+• ions shows that only the 6+ to 9+, not the 10+ to 13+ ions, have tertiary noncovalent bonding; this is indicated as hydrogen bonding by the 3,050–3,775 cm−1 photofragment spectrum. ECD spectra and H/D exchange of the 13+ ions are consistent with an all α-helical secondary structure, with the 11+ and 10+ ions sufficiently destabilized to denature small bend regions near the helix termini. In the 8+ and 9+ ions these terminal helical regions are folded over to be antiparallel and noncovalently bonded to part of the central helix, whereas this overlap is extended in the 7+, 6+, and, presumably, 5+ ions to form a highly stable three-helix bundle. Thermal denaturing of the 7+ to 9+ conformers both peels and slides back the outer helices from the central one, but for the 6+ conformer, this instead extends the protein ends away to shrink the three-helix bundle. Thus removal of H2O from a native protein negates hydrophobic interactions, preferentially stabilizes the α-helical secondary structure with direct solvation of additional protons, and increases tertiary interhelix dipole-dipole and hydrogen bonding.
International Journal of Proteomics | 2012
Ruenn Chai Lai; Soon Sim Tan; Bao Ju Teh; Siu Kwan Sze; Fatih Arslan; Dominique P.V. de Kleijn; Sai Kiang Lim
Mesenchymal stem cells (MSCs) are used in many of the current stem cell-based clinical trials and their therapeutic efficacy has increasingly been attributed to secretion of paracrine factors. We have previously demonstrated that a therapeutic constituent of this secretion is exosome, a secreted bilipid membrane vesicle of ~50–100 nm with a complex cargo that is readily internalized by H9C2 cardiomyocytes. It reduces infarct size in a mouse model of myocardial ischemia/reperfusion (MI/R) injury. We postulate that this therapeutic efficacy is derived from the synergy of a select permutation of individual exosome components. To identify protein candidates in this permutation, the proteome was profiled and here we identified 20S proteasome as a protein candidate. Mass spectrometry analysis detected all seven α and seven β chains of the 20S proteasome, and also the three beta subunits of “immunoproteasome” with a very high confidence level. We demonstrated that a functional proteasome copurified with MSC exosomes with a density of 1.10–1.18 g/mL, and its presence correlated with a modest but significant reduction in oligomerized protein in a mouse model of myocardial infarction. Circulating proteasomes in human blood also copurified with exosomes. Therefore, 20S proteasome is a candidate exosome protein that could synergize with other constituents to ameliorate tissue damage.
Molecular & Cellular Proteomics | 2012
Sunil S. Adav; Lim Tze Chao; Siu Kwan Sze
Trichoderma reesei is a mesophilic, filamentous fungus, and it is a major industrial source of cellulases, but its lignocellulolytic protein expressions on lignocellulosic biomass are poorly explored at present. The extracellular proteins secreted by T. reesei QM6a wild-type and hypercellulolytic mutant Rut C30 grown on natural lignocellulosic biomasses were explored using a quantitative proteomic approach with 8-plex high throughput isobaric tags for relative and absolute quantification (iTRAQ) and analyzed by liquid chromatography tandem mass spectrometry. We quantified 230 extracellular proteins, including cellulases, hemicellulases, lignin-degrading enzymes, proteases, protein-translocating transporter, and hypothetical proteins. Quantitative iTRAQ results suggested that the expressions and regulations of these lignocellulolytic proteins in the secretome of T. reesei wild-type and mutant Rut C30 were dependent on both nature and complexity of different lignocellulosic carbon sources. Therefore, we discuss here the essential lignocellulolytic proteins for designing an enzyme mixture for optimal lignocellulosic biomass hydrolysis.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2010
Dominique P.V. de Kleijn; Frans L. Moll; Willem E. Hellings; Gonen Ozsarlak-Sozer; Peter de Bruin; Pieter A. Doevendans; Aryan Vink; Louise M. Catanzariti; Arjan H. Schoneveld; Ale Algra; Mat J.A.P. Daemen; E.A. Biessen; W. de Jager; Huoming Zhang; Jean-Paul P.M. de Vries; Erling Falk; Sai Kiang Lim; Peter J. van der Spek; Siu Kwan Sze; Gerard Pasterkamp
Objective—Atherosclerotic cardiovascular disease is a major burden to health care. Because atherosclerosis is considered a systemic disease, we hypothesized that one single atherosclerotic plaque contains ample molecular information that predicts future cardiovascular events in all vascular territories. Methods and Results—AtheroExpress is a biobank collecting atherosclerotic lesions during surgery, with a 3-year follow-up. The composite primary outcome encompasses all cardiovascular events and interventions, eg, cardiovascular death, myocardial infarction, stroke, and endovascular interventions. A proteomics search identified osteopontin as a potential plaque biomarker. Patients undergoing carotid surgery (n=574) served as the cohort in which plaque osteopontin levels were examined in relation to their outcome during follow-up and was validated in a cohort of patients undergoing femoral endarterectomy (n=151). Comparing the highest quartile of carotid plaque osteopontin levels with quartile 1 showed a hazard ratio for the primary outcome of 3.8 (95% confidence interval, 2.6–5.9). The outcome did not change after adjustment for plaque characteristics and traditional risk factors (hazard ratio, 3.5; 95% confidence interval, 2.0–5.9). The femoral validation cohort showed a hazard ratio of 3.8 (95% confidence interval 2.0 to 7.4) comparing osteopontin levels in quartile 4 with quartile 1. Conclusion—Plaque osteopontin levels in single lesions are predictive for cardiovascular events in other vascular territories. Local atherosclerotic plaques are a source of prognostic biomarkers with a high predictive value for secondary manifestations of atherosclerotic disease.
Molecular & Cellular Proteomics | 2011
Piliang Hao; Yan Ren; Andrew J. Alpert; Siu Kwan Sze
Identification of deamidated sites in proteins is commonly used for assignment of N-glycosylation sites. It is also important for assessing the role of deamidation in vivo. However, nonenzymatic deamidation occurs easily in peptides under conditions commonly used in treatment with trypsin and PNGase F. The impact on proteomic sample preparation has not yet been evaluated systematically. In addition, the 13C peaks of amidated peptides can be misassigned as monoisotopic peaks of the corresponding deamidated ones in database searches. The 19.34 mDa mass difference between them is proposed as a means for eliminating the resulting false positive identifications in large-scale proteomic analysis. We evaluated five groups of proteomic data, obtained mainly through an electrostatic repulsion-hydrophilic interaction chromatography (ERLIC)-reverse phase (RP) chromatography sequence, and ascertained that nonenzymatic asparagine deamidation occurred to some extent on 4–9% of the peptides, resulting in the false positive identification of many N-glycosylation sites. A comprehensive investigation indicated that the chief causative factors were the mildly alkaline pH and prolonged incubations at 37 °C during proteomic sample preparation. An improved protocol is proposed featuring tryptic digestion at pH 6 and deglycosylation at pH 5, resulting in a significant decrease in nonenzymatic deamidation while conserving adequate digestion efficiency. The number of identified deamidation sites was improved significantly by increasing the sample loading amount in liquid chromatography-tandem MS. This permitted the identification of a significant number of glutamine deamidation sites, which featured sequence motifs largely different from those for asparagine deamidation: -Q-V-, -Q-L- and -Q-G- and, to a lesser extent, -Q-A- and -Q-E-.
Journal of Proteome Research | 2008
Chee Sian Gan; Tiannan Guo; Huoming Zhang; Sai Kiang Lim; Siu Kwan Sze
Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) has been introduced recently for phosphopeptide enrichment. Here we compared ERLIC with the well-established SCX-IMAC for identifying phosphopeptides in EGF-treated A431 cells. The ERLIC approach detected a higher number of phosphopeptides (17 311) than SCX-IMAC (4850), but it only detected 926 unique phosphopeptides compared to 1315 in SCX-IMAC. Only 12% unique phosphopeptides were common to both approaches, suggesting that more comprehensive phosphoproteomes could be generated by complementing SCX-IMAC with ERLIC.