Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siu-Lung Chan is active.

Publication


Featured researches published by Siu-Lung Chan.


Journal of Applied Physiology | 2011

Cerebral vascular adaptation to pregnancy and its role in the neurological complications of eclampsia

Marilyn J. Cipolla; Julie G. Sweet; Siu-Lung Chan

The cerebral circulation has a central role in mediating the neurological complications of eclampsia, yet our understanding of how pregnancy and preeclampsia affect this circulation is severely limited. Here, we show that pregnancy causes outward remodeling of penetrating arterioles and increased capillary density in the brain due to activation of peroxisome proliferator-activated receptor-γ (PPARγ), a transcription factor involved in cerebrovascular remodeling and highly activated in pregnancy. Pregnancy-induced PPARγ activation also significantly affected cerebral hemodynamics, decreasing vascular resistance and increasing cerebral blood flow by ∼40% in response to acute hypertension that caused breakthrough of autoregulation. These structural and hemodynamic changes in the brain during pregnancy were associated with substantially increased blood-brain barrier permeability, an effect that could promote passage of damaging proteins into the brain and cause the neurological complications of eclampsia, including seizure.


The FASEB Journal | 2013

Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension

Siu-Lung Chan; Julie G. Sweet; Marilyn J. Cipolla

We investigated the effect of hypertension on the function and structure of cerebral parenchymal arterioles (PAs), a major target of cerebral small vessel disease (SVD), and determined whether relaxin is a treatment for SVD during hypertension. PAs were isolated from 18‐wk‐old female normotensive Wistar‐Kyoto (WKY) rats, spontaneous hypertensive rats (SHRs), and SHRs treated with human relaxin 2 for 14 d (4 (μg/h; n=8/group) and studied using a pressurized arteriograph system. Hypertension reduced PA inner diameter (58±3 vs. 49±3 μm at 60 mmHg in WKY rats, P<0.05), suggesting inward remodeling that was reversed by relaxin (56±4 μm, P<0.05). Relaxin also increased PA distensibility in SHRs (34 ±2 vs. 10±2% in SHRs, P<0.05). Relaxin was detected in cerebrospinal fluid (110±30 pg/ml) after systemic administration, suggesting that it crosses the blood‐brain barrier (BBB). Relaxin receptors (RXFP1/2) were not detected in cerebral vasculature, but relaxin increased vascular endothelial growth factor (VEGF) and matrix metalloproteinase 2 (MMP‐2) expression in brain cortex. Inhibition of VEGF receptor tyrosine kinase (axitinib, 4 mg/kg/d, 14 d) had no effect on increased distensibility with relaxin, but caused outward hypertrophic remodeling of PAs from SHRs. These results suggest that relaxin crosses the BBB and activates MMP‐2 in brain cortex, which may interact with PAs to increase distensibility. VEGF appears to be involved in remodeling of PAs, but not relaxin‐induced increased distensibility.—Chan, S.‐L., Sweet, J. G., Cipolla, M. J., Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension. FASEB J. 27, 3917–3927 (2013). www.fasebj.org


The FASEB Journal | 2011

Relaxin causes selective outward remodeling of brain parenchymal arterioles via activation of peroxisome proliferator-activated receptor-γ

Siu-Lung Chan; Marilyn J. Cipolla

Brain parenchymal arterioles (PAs), but not pial arteries, undergo hypotrophic outward remodeling during pregnancy that involves peroxisome proliferator‐activated receptor‐γ (PPARγ) activation. Relaxin, a peptide hormone produced during pregnancy, is involved in systemic and renal artery remodeling and activates PPARγ in vitro. Thus, we hypothesized that relaxin is involved in the selective outward remodeling of PAs through a PPARγ‐dependent mechanism. Nonpregnant rats were treated with relaxin (4 μg/h, osmotic minipump), relaxin plus PPARγ inhibitor GW9662 (10 mg/kg/d), or vehicle for 10 d. Vascular function and structure were compared in isolated and pressurized middle cerebral arteries (MCAs) and PAs taken from the same animals. Relaxin treatment increased serum relaxin to the level of pregnancy (54 ng/ml) and increased passive wall thickness (hypertrophy; 70±5 vs. 54±4 μm in vehicle; P<0.05) and inner diameter (outward remodeling; 10.6±0.5 vs. 8.0±0.6 μm in vehicle; P<0.05) in PAs, but not in MCAs. This hypertrophic outward remodeling was prevented by GW9662 that had diameters (57±3 μm) and wall thickness (8.6±1.0 μm) similar to vehicle. GW9662 also prevented relaxin‐induced changes in PPARγ target gene expression. These results suggest that relaxin produced during pregnancy may be partly responsible for selective remodeling of PAs during pregnancy through a mechanism involving PPARγ.—Chan, S.‐L., Cipolla, M. J. Relaxin causes selective outward remodeling of brain parenchymal arterioles via activation of peroxisome proliferator‐activated receptor‐γ. FASEB J. 25, 3229‐3239 (2011). www.fasebj.org


PLOS ONE | 2014

Magnesium Sulfate Treatment Reverses Seizure Susceptibility and Decreases Neuroinflammation in a Rat Model of Severe Preeclampsia

Abbie Chapman Johnson; Sarah M. Tremble; Siu-Lung Chan; Janae Moseley; Babbette LaMarca; Keith J. Nagle; Marilyn J. Cipolla

Eclampsia, defined as unexplained seizure in a woman with preeclampsia, is a life-threatening complication of pregnancy with unclear etiology. Magnesium sulfate (MgSO4) is the leading eclamptic seizure prophylactic, yet its mechanism of action remains unclear. Here, we hypothesized severe preeclampsia is a state of increased seizure susceptibility due to blood-brain barrier (BBB) disruption and neuroinflammation that lowers seizure threshold. Further, MgSO4 decreases seizure susceptibility by protecting the BBB and preventing neuroinflammation. To model severe preeclampsia, placental ischemia (reduced uteroplacental perfusion pressure; RUPP) was combined with a high cholesterol diet (HC) to cause maternal endothelial dysfunction. RUPP+HC rats developed symptoms associated with severe preeclampsia, including hypertension, oxidative stress, endothelial dysfunction and fetal and placental growth restriction. Seizure threshold was determined by quantifying the amount of pentylenetetrazole (PTZ; mg/kg) required to elicit seizure in RUPP+HC±MgSO4 and compared to normal pregnant controls (n = 6/group; gestational day 20). RUPP+HC rats were more sensitive to PTZ with seizure threshold being ∼65% lower vs. control (12.4±1.7 vs. 36.7±3.9 mg/kg PTZ; p<0.05) that was reversed by MgSO4 (45.7±8.7 mg/kg PTZ; p<0.05 vs. RUPP+HC). BBB permeability to sodium fluorescein, measured in-vivo (n = 5–7/group), was increased in RUPP+HC vs. control rats, with more tracer passing into the brain (15.9±1.0 vs. 12.2±0.3 counts/gram ×1000; p<0.05) and was unaffected by MgSO4 (15.6±1.0 counts/gram ×1000; p<0.05 vs. controls). In addition, RUPP+HC rats were in a state of neuroinflammation, indicated by 35±2% of microglia being active compared to 9±2% in normal pregnancy (p<0.01; n = 3–8/group). MgSO4 treatment reversed neuroinflammation, reducing microglial activation to 6±2% (p<0.01 vs. RUPP+HC). Overall, RUPP+HC rats were in a state of augmented seizure susceptibility potentially due to increased BBB permeability and neuroinflammation. MgSO4 treatment reversed this, increasing seizure threshold and decreasing neuroinflammation, without affecting BBB permeability. Thus, reducing neuroinflammation may be one mechanism by which MgSO4 prevents eclampsia during severe preeclampsia.


Stroke | 2014

Postischemic Reperfusion Causes Smooth Muscle Calcium Sensitization and Vasoconstriction of Parenchymal Arterioles

Marilyn J. Cipolla; Siu-Lung Chan; Julie G. Sweet; Matthew J. Tavares; Natalia I. Gokina; Joseph E. Brayden

Background and Purpose— Parenchymal arterioles (PAs) are high-resistance vessels in the brain that connect pial vessels to the microcirculation. We previously showed that PAs have increased vasoconstriction after ischemia and reperfusion that could increase perfusion deficit. Here, we investigated underlying mechanisms by which early postischemic reperfusion causes increased vasoconstriction of PAs. Methods— Isolated and pressurized PAs from within the middle cerebral artery territory were studied in male Wistar rats that were either nonischemic control (n=34) or after exposure to transient middle cerebral artery occlusion (MCAO) by filament occlusion for 2 hours with 30 minutes of reperfusion (MCAO; n=38). The relationships among pressure-induced tone, smooth muscle calcium (using Fura 2), and membrane potential were determined. Sensitivity of the contractile apparatus to calcium was measured in permeabilized arterioles using Staphylococcus aureus &agr;-toxin. Reactivity to inhibition of transient receptor potential melastanin receptor type 4 (9-phenanthrol), Rho kinase (Y27632), and protein kinase C (Gö6976) was also measured. Results— After MCAO, PAs had increased myogenic tone compared with controls (47±2% versus 35±2% at 40 mm Hg; P<0.01), without an increase in smooth muscle calcium (177±21 versus 201±16 nmol/L; P>0.05) or membrane depolarization (−38±4 versus −36±1 mV; P>0.05). In &agr;-toxin–permeabilized vessels, MCAO caused increased sensitivity of the contractile apparatus to calcium. MCAO did not affect dilation to transient receptor potential melastanin receptor type 4 or protein kinase C inhibition but diminished dilation to Rho kinase inhibition. Conclusions— The increased vasoconstriction of PAs during early postischemic reperfusion seems to be due to calcium sensitization of smooth muscle and could contribute to infarct expansion and limit neuroprotective agents from reaching their target tissue.


Hypertension | 2012

Effect of Pregnancy on Autoregulation of Cerebral Blood Flow in Anterior Versus Posterior Cerebrum

Marilyn J. Cipolla; Nicole Bishop; Siu-Lung Chan

Severe preeclampsia and eclampsia are associated with brain edema that forms preferentially in the posterior cerebral cortex possibly because of decreased sympathetic innervation of posterior cerebral arteries and less effective autoregulation during acute hypertension. In the present study, we examined the effect of pregnancy on the effectiveness of cerebral blood flow autoregulation using laser Doppler flowmetry and edema formation by wet:dry weight in acute hypertension induced by phenylephrine infusion in the anterior and posterior cerebrum from nonpregnant (n=8) and late-pregnant (n=6) Sprague-Dawley rats. In addition, we compared the effect of pregnancy on sympathetic innervation by tyrosine hydroxylase staining of posterior and middle cerebral arteries (n=5–6 per group) and endothelial and neuronal NO synthase expression using quantitative PCR (n=3 per group). In nonpregnant animals, there was no difference in autoregulation between the anterior and posterior cerebrum. However, in late-pregnant animals, the threshold of cerebral blood flow autoregulation was shifted to lower pressures in the posterior cerebrum, which was associated with increased neuronal NO synthase expression in the posterior cerebral cortex versus anterior. Compared with the nonpregnant state, pregnancy increased the threshold of autoregulation in both brain regions that was related to decreased expression of endothelial NO synthase. Lastly, acute hypertension during pregnancy caused greater edema formation in both brain cortices that was not attributed to changes in sympathetic innervation. These findings suggest that, although pregnancy shifted the cerebral blood flow autoregulatory curve to higher pressures in both the anterior and posterior cortices, it did not protect from edema during acute hypertension.


Stroke | 2016

Pial Collateral Reactivity During Hypertension and Aging: Understanding the Function of Collaterals for Stroke Therapy

Siu-Lung Chan; Julie G. Sweet; Nicole Bishop; Marilyn J. Cipolla

Background and Purpose— We investigated vasoactive properties of leptomeningeal arterioles (LMAs) under normotensive conditions and during hypertension and aging that are known to have poor collateral flow and little salvageable tissue. Methods— LMAs, identified as distal anastomotic arterioles connecting middle and anterior cerebral arteries, were studied isolated and pressurized from young (18 weeks) or aged (48 weeks) normotensive Wistar Kyoto (WKY18, n=14; WKY48, n=6) rats and spontaneously hypertensive rats (SHR18, n=16; SHR48, n=6). Myogenic tone and vasoactive responses to pressure as well as endothelial function and ion channel activity were measured. Results— LMAs from WKY18 had little myogenic tone at 40 mm Hg (8±3%) that increased in aged WKY48 (30±6%). However, LMAs from both WKY groups dilated to increased pressure and demonstrated little myogenic reactivity, a response that would be conducive to collateral flow. In contrast, LMAs from both SHR18 and SHR48 displayed considerable myogenic tone (56±8% and 43±7%; P<0.01 versus WKY) and constricted to increased pressure. LMAs from both WKY and SHR groups had similar basal endothelial nitric oxide and IK channel activity that opposed tone. However, dilation to sodium nitroprusside, diltiazem and 15 mmol/L KCl was impaired in LMAs from SHR18. Conclusions— This study shows for the first time that LMAs from young and aged SHR are vasoconstricted and have impaired vasodilatory responses that may contribute to greater perfusion deficit and little penumbral tissue. These results also suggest that therapeutic opening of pial collaterals is possible during middle cerebral artery occlusion to create penumbral tissue and prevent infarct expansion.


Journal of Applied Physiology | 2014

Increased pressure-induced tone in rat parenchymal arterioles vs. middle cerebral arteries: role of ion channels and calcium sensitivity

Marilyn J. Cipolla; Julie G. Sweet; Siu-Lung Chan; Matthew J. Tavares; Natalia I. Gokina; Joseph E. Brayden

Brain parenchymal arterioles (PAs) are high-resistance vessels that branch off pial arteries and perfuse the brain parenchyma. PAs are the target of cerebral small vessel disease and have been shown to have greater pressure-induced tone at lower pressures than pial arteries. We investigated mechanisms by which brain PAs have increased myogenic tone compared with middle cerebral arteries (MCAs), focusing on differences in vascular smooth muscle (VSM) calcium and ion channel function. The amount of myogenic tone and VSM calcium was measured using Fura 2 in isolated and pressurized PAs and MCAs. Increases in intraluminal pressure caused larger increases in tone and cytosolic calcium in PAs compared with MCAs. At 50 mmHg, myogenic tone was 37 ± 5% for PAs vs. 6.5 ± 4% for MCAs (P < 0.01), and VSM calcium was 200 ± 20 nmol/l in PAs vs. 104 ± 15 nmol/l in MCAs (P < 0.01). In vessels permeabilized with Staphylococcus aureus α-toxin, PAs were not more sensitive to calcium, suggesting calcium sensitization was not at the level of the contractile apparatus. PAs were 30-fold more sensitive to the voltage-dependent calcium channel (VDCC) inhibitor nifedipine than MCAs (EC50 for PAs was 3.5 ± 0.4 vs. 82.1 ± 2.1 nmol/l for MCAs;P < 0.01); however, electrophysiological properties of the VDCC were not different in VSM. PAs had little to no response to the calcium-activated potassium channel inhibitor iberiotoxin, whereas MCAs constricted ∼15%. Thus increased myogenic tone in PAs appears related to differences in ion channel activity that promotes VSM membrane depolarization but not to a direct sensitization of the contractile apparatus to calcium.


Frontiers in Physiology | 2010

Effect of PPARγ Inhibition during Pregnancy on Posterior Cerebral Artery Function and Structure

Siu-Lung Chan; Abbie C. Chapman; Julie G. Sweet; Natalia I. Gokina; Marilyn J. Cipolla

Peroxisome proliferator-activated receptor-γ (PPARγ), a ligand-activated transcription factor, has protective roles in the cerebral circulation and is highly activated during pregnancy. Thus, we hypothesized that PPARγ is involved in the adaptation of cerebral vasculature to pregnancy. Non-pregnant (NP) and late-pregnant (LP) rats were treated with a specific PPARγ inhibitor GW9662 (10 ]mg/kg/day, in food) or vehicle for 10 days and vascular function and structural remodeling were determined in isolated and pressurized posterior cerebral arteries (PCA). Expression of PPARγ and angiotensin type 1 receptor (AT1R) in cerebral (pial) vessels was determined by real-time RT-PCR. PPARγ inhibition decreased blood pressure and increased blood glucose in NP rats, but not in LP rats. PPARγ inhibition reduced dilation to acetylcholine and sodium nitroprusside in PCA from NP (p < 0.05 vs. LP-GW), but not LP rats. PPARγ inhibition tended to increase basal tone and myogenic activity in PCA from NP rats, but not LP rats. Structurally, PPARγ inhibition increased wall thickness in PCA from both NP and LP rats (p < 0.05), but increased distensibility only in PCA from NP rats. Pregnancy decreased expression of PPARγ and AT1R (p < 0.05) in cerebral arteries that was not affected by GW9662 treatment. These results suggest that PPARγ inhibition had significant effects on the function and structure of PCA in the NP state, but appeared to have less influence during pregnancy. Down-regulation of PPARγ and AT1R in cerebral arteries may be responsible for the lack of effect of PPARγ in cerebral vasculature and may be part of the vascular adaptation to pregnancy.


Reproductive Sciences | 2013

Effect of Pregnancy and Nitric Oxide on the Myogenic Vasodilation of Posterior Cerebral Arteries and the Lower Limit of Cerebral Blood Flow Autoregulation

Abbie C. Chapman; Marilyn J. Cipolla; Siu-Lung Chan

Hemorrhage during parturition can lower blood pressure beyond the lower limit of cerebral blood flow (CBF) autoregulation that can cause ischemic brain injury. However, the impact of pregnancy on the lower limit of CBF autoregulation is unknown. We measured myogenic vasodilation, a major contributor of CBF autoregulation, in isolated posterior cerebral arteries (PCAs) from nonpregnant and late-pregnant rats (n = 10/group) while the effect of pregnancy on the lower limit of CBF autoregulation was studied in the posterior cerebral cortex during controlled hemorrhage (n = 8). Pregnancy enhanced myogenic vasodilation in PCA and shifted the lower limit of CBF autoregulation to lower pressures. Inhibition of nitric oxide synthase (NOS) prevented the enhanced myogenic vasodilation during pregnancy but did not affect the lower limit of CBF autoregulation. The shift in the autoregulatory curve to lower pressures during pregnancy is likely protective of ischemic injury during hemorrhage and appears to be independent of NOS.

Collaboration


Dive into the Siu-Lung Chan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Babbette LaMarca

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge