Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siu Mui Tsai is active.

Publication


Featured researches published by Siu Mui Tsai.


Journal of Bacteriology | 2004

Comparative Genomics of Two Leptospira interrogans Serovars Reveals Novel Insights into Physiology and Pathogenesis

Ana L. T. O. Nascimento; A. I. Ko; Elizabeth A. L. Martins; Claudia B. Monteiro-Vitorello; Paulo Lee Ho; David A. Haake; Sergio Verjovski-Almeida; Rudy A. Hartskeerl; Marilis V. Marques; Marina Oliveira; Carlos Frederico Martins Menck; Luciana C.C. Leite; Helaine Carrer; Luiz Lehmann Coutinho; W. M. Degrave; Odir A. Dellagostin; Emer S. Ferro; Maria Inês Tiraboschi Ferro; Luiz Roberto Furlan; Marcia Gamberini; Éder A. Giglioti; Aristóteles Góes-Neto; Gustavo H. Goldman; Maria Helena S. Goldman; Ricardo Harakava; S. M. B Jerônimo; I. L. M. Junqueira-de-Azevedo; Edna T. Kimura; Eiko E. Kuramae; Eliana Gertrudes de Macedo Lemos

Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in accidental hosts, including humans. Complete genome sequencing of Leptospira interrogans serovar Copenhageni and comparative analysis with the available Leptospira interrogans serovar Lai genome reveal that despite overall genetic similarity there are significant structural differences, including a large chromosomal inversion and extensive variation in the number and distribution of insertion sequence elements. Genome sequence analysis elucidates many of the novel aspects of leptospiral physiology relating to energy metabolism, oxygen tolerance, two-component signal transduction systems, and mechanisms of pathogenesis. A broad array of transcriptional regulation proteins and two new families of afimbrial adhesins which contribute to host tissue colonization in the early steps of infection were identified. Differences in genes involved in the biosynthesis of lipopolysaccharide O side chains between the Copenhageni and Lai serovars were identified, offering an important starting point for the elucidation of the organisms complex polysaccharide surface antigens. Differences in adhesins and in lipopolysaccharide might be associated with the adaptation of serovars Copenhageni and Lai to different animal hosts. Hundreds of genes encoding surface-exposed lipoproteins and transmembrane outer membrane proteins were identified as candidates for development of vaccines for the prevention of leptospirosis.


Journal of Bacteriology | 2003

Comparative Analyses of the Complete Genome Sequences of Pierce's Disease and Citrus Variegated Chlorosis Strains of Xylella fastidiosa

M. A. Van Sluys; M. C. de Oliveira; Claudia B. Monteiro-Vitorello; Cristina Y. Miyaki; L. R. Furlan; Luis Eduardo Aranha Camargo; A. C. R. da Silva; David Henry Moon; Marco A. Takita; Eliana Gertrudes de Macedo Lemos; Marcos Antonio Machado; Maria Inês Tiraboschi Ferro; F. R. da Silva; Maria Helena S. Goldman; Gustavo H. Goldman; Manoel Victor Franco Lemos; Siu Mui Tsai; Helaine Carrer; Dirce Maria Carraro; R. C. de Oliveira; Luiz R. Nunes; W. J. Siqueira; Luiz Lehmann Coutinho; Edna T. Kimura; Emer S. Ferro; Ricardo Harakava; Eiko E. Kuramae; Celso Luis Marino; Éder A. Giglioti; I. L. Abreu

Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X. fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierces disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X. fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X. fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X. fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.


Theoretical and Applied Genetics | 1998

Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps

R. Freyre; Paul W. Skroch; Valérie Geffroy; A.-F. Adam-Blondon; A. Shirmohamadali; William C. Johnson; V. Llaca; R. O. Nodari; P. A. Pereira; Siu Mui Tsai; Joseph M. Tohme; M. Dron; James Nienhuis; C. E. Vallejos; Paul Gepts

Abstract Three RFLP maps, as well as several RAPD maps have been developed in common bean (Phaseolus vulgaris L.). In order to align these maps, a core linkage map was established in the recombinant inbred population BAT93×Jalo EEP558 (BJ). This map has a total length of 1226 cM and comprises 563 markers, including some 120 RFLP and 430 RAPD markers, in addition to a few isozyme and phenotypic marker loci. Among the RFLPs mapped were markers from the University of California, Davis (established in the F2 of the BJ cross), University of Paris-Orsay, and University of Florida maps. These shared markers allowed us to establish a correspondence between the linkage groups of these three RFLP linkage maps. In total, the general map location (i.e., the linkage group membership and approximate location within linkage groups) has been determined for some 1070 markers. Approaches to align this core map with other current or future maps are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities

Jorge L. M. Rodrigues; Vivian H. Pellizari; Rebecca C. Mueller; Kyung-Hwa Baek; Ederson da Conceição Jesus; Fabiana S. Paula; Babur S. Mirza; George S. Hamaoui; Siu Mui Tsai; Brigitte Josefine Feigl; James M. Tiedje; Brendan J. M. Bohannan; Klaus Nüsslein

The Amazon rainforest is the Earth’s largest reservoir of plant and animal diversity, and it has been subjected to especially high rates of land use change, primarily to cattle pasture. This conversion has had a strongly negative effect on biological diversity, reducing the number of plant and animal species and homogenizing communities. We report here that microbial biodiversity also responds strongly to conversion of the Amazon rainforest, but in a manner different from plants and animals. Local taxonomic and phylogenetic diversity of soil bacteria increases after conversion, but communities become more similar across space. This homogenization is driven by the loss of forest soil bacteria with restricted ranges (endemics) and results in a net loss of diversity. This study shows homogenization of microbial communities in response to human activities. Given that soil microbes represent the majority of biodiversity in terrestrial ecosystems and are intimately involved in ecosystem functions, we argue that microbial biodiversity loss should be taken into account when assessing the impact of land use change in tropical forests.


The ISME Journal | 2014

Taxonomical and functional microbial community selection in soybean rhizosphere

Lucas William Mendes; Eiko E. Kuramae; Acacio Aparecido Navarrete; Johannes A. van Veen; Siu Mui Tsai

This study addressed the selection of the rhizospheric microbial community from the bulk soil reservoir under agricultural management of soybean in Amazon forest soils. We used a shotgun metagenomics approach to investigate the taxonomic and functional diversities of microbial communities in the bulk soil and in the rhizosphere of soybean plants and tested the validity of neutral and niche theories to explain the rhizosphere community assembly processes. Our results showed a clear selection at both taxonomic and functional levels operating in the assembly of the soybean rhizosphere community. The taxonomic analysis revealed that the rhizosphere community is a subset of the bulk soil community. Species abundance in rhizosphere fits the log-normal distribution model, which is an indicator of the occurrence of niche-based processes. In addition, the data indicate that the rhizosphere community is selected based on functional cores related to the metabolisms of nitrogen, iron, phosphorus and potassium, which are related to benefits to the plant, such as growth promotion and nutrition. The network analysis including bacterial groups and functions was less complex in rhizosphere, suggesting the specialization of some specific metabolic pathways. We conclude that the assembly of the microbial community in the rhizosphere is based on niche-based processes as a result of the selection power of the plant and other environmental factors.


Brazilian Journal of Plant Physiology | 2006

Brazilian coffee genome project: an EST-based genomic resource

Luiz Gonzaga Esteves Vieira; Alan Carvalho Andrade; Carlos Augusto Colombo; Ana Heloneida de Araújo Moraes; Ângela Metha; Angélica Carvalho de Oliveira; Carlos Alberto Labate; Celso Luis Marino; Claudia B. Monteiro-Vitorello; Damares C. Monte; Éder A. Giglioti; Edna T. Kimura; Eduardo Romano; Eiko E. Kuramae; Eliana Gertrudes de Macedo Lemos; Elionor Rita Pereira de Almeida; Erika C. Jorge; Erika V.S. Albuquerque; Felipe Rodrigues da Silva; Felipe Vinecky; Haiko Enok Sawazaki; Hamza Fahmi A. Dorry; Helaine Carrer; Ilka Nacif Abreu; João A. N. Batista; João Batista Teixeira; João Paulo Kitajima; Karem Guimarães Xavier; Liziane Maria de Lima; Luis Eduardo Aranha Camargo

Coffee is one of the most valuable agricultural commodities and ranks second on international trade exchanges. The genus Coffea belongs to the Rubiaceae family which includes other important plants. The genus contains about 100 species but commercial production is based only on two species, Coffea arabica and Coffea canephora that represent about 70 % and 30 % of the total coffee market, respectively. The Brazilian Coffee Genome Project was designed with the objective of making modern genomics resources available to the coffee scientific community, working on different aspects of the coffee production chain. We have single-pass sequenced a total of 214,964 randomly picked clones from 37 cDNA libraries of C. arabica, C. canephora and C. racemosa, representing specific stages of cells and plant development that after trimming resulted in 130,792, 12,381 and 10,566 sequences for each species, respectively. The ESTs clustered into 17,982 clusters and 32,155 singletons. Blast analysis of these sequences revealed that 22 % had no significant matches to sequences in the National Center for Biotechnology Information database (of known or unknown function). The generated coffee EST database resulted in the identification of close to 33,000 different unigenes. Annotated sequencing results have been stored in an online database at http://www.lge.ibi.unicamp.br/cafe. Resources developed in this project provide genetic and genomic tools that may hold the key to the sustainability, competitiveness and future viability of the coffee industry in local and international markets.


Plant and Soil | 1993

Genotypic variation in biological nitrogen fixation by common bean

G. Hardarson; F. A. Bliss; M. R. Cigales-Rivero; R. A. Henson; Judith A. Kipe-Nolt; Luis Longeri; A. Manrique; J. J. Peña-Cabriales; P. A. A. Pereira; C. A. Sanabria; Siu Mui Tsai

Field experiments were performed in Austria, Brazil, Chile, Colombia, Guatemala, Mexico and Peru as part of an FAO/IAEA Co-ordinated Research Programme to investigate the nitrogen fixing potential of cultivars and breeding lines of common bean (Phaseolus vulgaris L.). Each experiment included approximately 20 bean genotypes which were compared using the 15N isotope dilution method. Great differences in nitrogen fixation were observed between and within experiments, with average values of 35% N derived from atmosphere (% Ndfa) and highest values of 70% Ndfa being observed. These values which were larger than had been reported previously for common bean, were observed only when environmental factors were favorable. Therefore, common bean lines are available, which can support high biological nitrogen fixation. These can be used either directly as cultivars for production or in breeding programmes to enhance nitrogen fixation in other cultivars.


Molecular Plant-microbe Interactions | 2004

The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli.

Claudia B. Monteiro-Vitorello; Luis Eduardo Aranha Camargo; Marie A. Van Sluys; João Paulo Kitajima; Daniela Truffi; Ricardo Harakava; Julio Cezar Franco de Oliveira; Derek W. Wood; Mariana C. Oliveira; Cristina Y. Miyaki; Marco A. Takita; Ana C. R. da Silva; Luis Roberto Furlan; Dirce Maria Carraro; Giovana Camarotte; Nalvo F. Almeida; Helaine Carrer; Luiz Lehmann Coutinho; Maria Inês Tiraboschi Ferro; Paulo R. Gagliardi; Éder A. Giglioti; Maria Helena S. Goldman; Gustavo H. Goldman; Edna T. Kimura; Emer S. Ferro; Eiko E. Kuramae; Eliana Gertrudes de Macedo Lemos; Manoel Victor Franco Lemos; Sônia Marli Zingaretti Di Mauro; Marcos Antonio Machado

The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.


Plant Cell Reports | 2012

Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses

Aline Borges; Siu Mui Tsai; Danielle Gregorio Gomes Caldas

Selection of reference genes is an essential consideration to increase the precision and quality of relative expression analysis by the quantitative RT-PCR method. The stability of eight expressed sequence tags was evaluated to define potential reference genes to study the differential expression of common bean target genes under biotic (incompatible interaction between common bean and fungus Colletotrichum lindemuthianum) and abiotic (drought; salinity; cold temperature) stresses. The efficiency of amplification curves and quantification cycle (Cq) were determined using LinRegPCR software. The stability of the candidate reference genes was obtained using geNorm and NormFinder software, whereas the normalization of differential expression of target genes [beta-1,3-glucanase 1 (BG1) gene for biotic stress and dehydration responsive element binding (DREB) gene for abiotic stress] was defined by REST software. High stability was obtained for insulin degrading enzyme (IDE), actin-11 (Act11), unknown 1 (Ukn1) and unknown 2 (Ukn2) genes during biotic stress, and for SKP1/ASK-interacting protein 16 (Skip16), Act11, Tubulin beta-8 (β-Tub8) and Unk1 genes under abiotic stresses. However, IDE and Act11 were indicated as the best combination of reference genes for biotic stress analysis, whereas the Skip16 and Act11 genes were the best combination to study abiotic stress. These genes should be useful in the normalization of gene expression by RT-PCR analysis in common bean, the most important edible legume.


FEMS Microbiology Ecology | 2013

Acidobacterial community responses to agricultural management of soybean in Amazon forest soils

Acacio Aparecido Navarrete; Eiko E. Kuramae; Mattias de Hollander; Agata S. Pijl; Johannes A. van Veen; Siu Mui Tsai

This study focused on the impact of land-use changes and agricultural management of soybean in Amazon forest soils on the abundance and composition of the acidobacterial community. Quantitative real-time PCR (q-PCR) assays and pyrosequencing of 16S rRNA gene were applied to study the acidobacterial community in bulk soil samples from soybean croplands and adjacent native forests, and mesocosm soil samples from soybean rhizosphere. Based on qPCR measurements, Acidobacteria accounted for 23% in forest soils, 18% in cropland soils, and 14% in soybean rhizosphere of the total bacterial signals. From the 16S rRNA gene sequences of Bacteria domain, the phylum Acidobacteria represented 28% of the sequences from forest soils, 16% from cropland soils, and 17% from soybean rhizosphere. Acidobacteria subgroups 1-8, 10, 11, 13, 17, 18, 22, and 25 were detected with subgroup 1 as dominant among them. Subgroups 4, 6, and 7 were significantly higher in cropland soils than in forest soils, which subgroups responded to decrease in soil aluminum. Subgroups 6 and 7 responded to high content of soil Ca, Mg, Mn, and B. These results showed a differential response of the Acidobacteria subgroups to abiotic soil factors, and open the possibilities to explore acidobacterial subgroups as early-warning bioindicators of agricultural soil management effects in the Amazon area.

Collaboration


Dive into the Siu Mui Tsai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Eduardo Aranha Camargo

Escola Superior de Agricultura Luiz de Queiroz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eiko E. Kuramae

Sao Paulo State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge