Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siu-Ying Lau is active.

Publication


Featured researches published by Siu-Ying Lau.


The Lancet | 2013

Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome

Yu Chen; Weifeng Liang; Shigui Yang; Nanping Wu; Hainv Gao; Jifang Sheng; Hangping Yao; Jianer Wo; Qiang Fang; Dawei Cui; Yongcheng Li; Xing Yao; Yuntao Zhang; Haibo Wu; Shufa Zheng; Hongyan Diao; Shichang Xia; Yanjun Zhang; Kwok-Hung Chan; Hoi-Wah Tsoi; Jade Lee-Lee Teng; Wenjun Song; Pui Wang; Siu-Ying Lau; Min Zheng; Jasper Fuk-Woo Chan; Kelvin K. W. To; Honglin Chen; Lanjuan Li; Kwok-Yung Yuen

Summary Background Human infection with avian influenza A H7N9 virus emerged in eastern China in February, 2013, and has been associated with exposure to poultry. We report the clinical and microbiological features of patients infected with influenza A H7N9 virus and compare genomic features of the human virus with those of the virus in market poultry in Zhejiang, China. Methods Between March 7 and April 8, 2013, we included hospital inpatients if they had new-onset respiratory symptoms, unexplained radiographic infiltrate, and laboratory-confirmed H7N9 virus infection. We recorded histories and results of haematological, biochemical, radiological, and microbiological investigations. We took throat and sputum samples, used RT-PCR to detect M, H7, and N9 genes, and cultured samples in Madin-Darby canine kidney cells. We tested for co-infections and monitored serum concentrations of six cytokines and chemokines. We collected cloacal swabs from 86 birds from epidemiologically linked wet markets and inoculated embryonated chicken eggs with the samples. We identified and subtyped isolates by RT-PCR sequencing. RNA extraction, complementary DNA synthesis, and PCR sequencing were done for one human and one chicken isolate. We characterised and phylogenetically analysed the eight gene segments of the viruses in the patients and the chickens isolates, and constructed phylogenetic trees of H, N, PB2, and NS genes. Findings We identified four patients (mean age 56 years), all of whom had contact with poultry 3–8 days before disease onset. They presented with fever and rapidly progressive pneumonia that did not respond to antibiotics. Patients were leucopenic and lymphopenic, and had impaired liver or renal function, substantially increased serum cytokine or chemokine concentrations, and disseminated intravascular coagulation with disease progression. Two patients died. Sputum specimens were more likely to test positive for the H7N9 virus than were samples from throat swabs. The viral isolate from the patient was closely similar to that from an epidemiologically linked market chicken. All viral gene segments were of avian origin. The H7 of the isolated viruses was closest to that of the H7N3 virus from domestic ducks in Zhejiang, whereas the N9 was closest to that of the wild bird H7N9 virus in South Korea. We noted Gln226Leu and Gly186Val substitutions in human virus H7 (associated with increased affinity for α-2,6-linked sialic acid receptors) and the PB2 Asp701Asn mutation (associated with mammalian adaptation). Ser31Asn mutation, which is associated with adamantane resistance, was noted in viral M2. Interpretation Cross species poultry-to-person transmission of this new reassortant H7N9 virus is associated with severe pneumonia and multiorgan dysfunction in human beings. Monitoring of the viral evolution and further study of disease pathogenesis will improve disease management, epidemic control, and pandemic preparedness. Funding Larry Chi-Kin Yung, National Key Program for Infectious Diseases of China.


Journal of Virology | 2008

Antigenic profile of avian H5N1 viruses in Asia from 2002 to 2007

Wai Lan Wu; Yixin Chen; Pui Wang; Wenjun Song; Siu-Ying Lau; Jane M. Rayner; Gavin J. D. Smith; Robert G. Webster; J. S. Malik Peiris; Tianwei Lin; Ningshao Xia; Yi Guan; Honglin Chen

ABSTRACT Antigenic profiles of post-2002 H5N1 viruses representing major genetic clades and various geographic sources were investigated using a panel of 17 monoclonal antibodies raised from five H5N1 strains. Four antigenic groups from seven clades of H5N1 virus were distinguished and characterized based on their cross-reactivity to the monoclonal antibodies in hemagglutination inhibition and cell-based neutralization assays. Genetic polymorphisms associated with the variation of antigenicity of H5N1 strains were identified and further verified in antigenic analysis with recombinant H5N1 viruses carrying specific mutations in the hemagglutinin protein. Modification of some of these genetic variations produced marked improvement to the immunogenicity and cross-reactivity of H5N1 strains in assays utilizing monoclonal antibodies and ferret antisera raised against clade 1 and 2 H5N1 viruses, suggesting that these sites represent antigenically significant amino acids. These results provide a comprehensive antigenic profile for H5N1 virus strains circulating in recent years and will facilitate the recognition of emerging antigenic variants of H5N1 virus and aid in the selection of vaccine strains.


The Journal of Infectious Diseases | 2014

Avian-Origin Influenza A(H7N9) Infection in Influenza A(H7N9)–Affected Areas of China: A Serological Study

Shigui Yang; Yu Chen; Dawei Cui; Hangping Yao; Jianzhou Lou; Zhaoxia Huo; Guoliang Xie; Fei Yu; Shufa Zheng; Yida Yang; Yixin Zhu; Xiaoqing Lu; Xiaoli Liu; Siu-Ying Lau; Jasper Fuk-Woo Chan; Kelvin K. W. To; Kwok-Yung Yuen; Honglin Chen; Lanjuan Li

Serological surveillance conducted in areas of an outbreak of influenza A(H7N9) infection in China found no seropositivity for antibodies specific for avian-origin influenza A(H7N9) among 1129 individuals of the general population, whereas >6% of 396 poultry workers were positive (on the basis of a hemagglutination inhibition titer of ≥ 80) for this subtype, confirming that infected poultry is the principal source of human infections and that subclinical infections are possible. Fourteen days after symptom onset, elevated levels of antibodies to A(H7N9) were found in 65.8% of patients (25/38) who survived but in only 28.6% of those (2/7) who died, suggesting that the presence of antibodies may improve clinical outcome in infected patients.


Nature Communications | 2014

The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication

Wenjun Song; Pui Wang; Bobo Wing-Yee Mok; Siu-Ying Lau; Xiaofeng Huang; Wai-Lan Wu; Min Zheng; Xi Wen; Shigui Yang; Yu Chen; Lanjuan Li; Kwok-Yung Yuen; Honglin Chen

Host-adaptive strategies, such as the E627K substitution in the PB2 protein, are critical for replication of avian influenza A viruses in mammalian hosts. Here we show that mutation PB2-K526R is present in some human H7N9 influenza isolates, in nearly 80% of H5N1 human isolates from Indonesia and, in conjunction with E627K, in almost all seasonal H3N2 viruses since 1970. Polymerase complexes containing PB2-526R derived from H7N9, H5N1 or H3N2 viruses exhibit increased polymerase activity. PB2-526R also enhances viral transcription and replication in cells. In comparison with viruses carrying 627K, H7N9 viruses carrying both 526R and 627K replicate more efficiently in mammalian (but not avian) cells and in mouse lung tissues, and cause greater body weight loss and mortality in infected mice. PB2-K526R interacts with nuclear export protein and our results suggest that it contributes to enhance replication for certain influenza virus subtypes, particularly in combination with 627K.


Journal of Virology | 2012

The NS1 protein of influenza A virus interacts with cellular processing bodies and stress granules through RNA-associated protein 55 (RAP55) during virus infection.

Bobo Wing-Yee Mok; Wenjun Song; Pui Wang; H. Tai; Yixin Chen; Min Zheng; Xi Wen; Siu-Ying Lau; Wai Lan Wu; Ken Matsumoto; Kwok-Yung Yuen; Honglin Chen

ABSTRACT The nonstructural protein (NS1) of influenza A virus performs multiple functions in the virus life cycle. Proteomic screening for cellular proteins which interact with NS1 identified the cellular protein RAP55, which is one of the components of cellular processing bodies (P-bodies) and stress granules. To verify whether NS1 interacts with cellular P-bodies, interactions between NS1, RAP55, and other P-body-associated proteins (Ago1, Ago2, and DCP1a) were confirmed using coimmunoprecipitation and cellular colocalization assays. Overexpression of RAP55 induced RAP55-associated stress granule formation and suppressed virus replication. Knockdown of RAP55 with small interfering RNA (siRNA) or expression of a dominant-negative mutant RAP55 protein with defective interaction with P-bodies blocked NS1 colocalization to P-bodies in cells. Expression of NS1 inhibited RAP55 expression and formation of RAP55-associated P-bodies/stress granules. The viral nucleoprotein (NP) was found to be targeted to stress granules in the absence of NS1 but localized to P-bodies when NS1 was coexpressed. Restriction of virus replication via P-bodies occurred in the early phases of infection, as the number of RAP55-associated P-bodies in cells diminished over the course of virus infection. NS1 interaction with RAP55-associated P-bodies/stress granules was associated with RNA binding and mediated via a protein kinase R (PKR)-interacting viral element. Mutations introduced into either RNA binding sites (R38 and K41) or PKR interaction sites (I123, M124, K126, and N127) caused NS1 proteins to lose the ability to interact with RAP55 and to inhibit stress granules. These results reveal an interplay between virus and host during virus replication in which NP is targeted to P-bodies/stress granules while NS1 counteracts this host restriction mechanism.


Journal of Infection | 2014

Unique reassortant of influenza A(H7N9) virus associated with severe disease emerging in Hong Kong

Kelvin K. W. To; Wenjun Song; Siu-Ying Lau; Tak-Lun Que; David Lung; Ivan Fan-Ngai Hung; Honglin Chen; Kwok-Yung Yuen

Summary Objective Human infections caused by avian influenza virus A(H7N9) re-emerged in late 2013. We reported the first Hong Kong patient without risk factors for severe A(H7N9) disease. Methods Direct sequencing was performed on the endotracheal aspirate collected from a 36-year-old female with history of poultry contact. Bioinformatic analysis was performed to compare the current strain and previous A(H7N9) isolates. Results The influenza A/Hong Kong/470129/2013 virus strain was detected in a patient with acute respiratory distress syndrome, deranged liver function and coagulation profile, cytopenia, and rhabdomyolysis. The HA, NA and MP genes of A/Hong Kong/470129/2013 cluster with those of other human A(H7N9) strains. The PB1, PB2 and NS genes are most closely related to those of A/Guangdong/1/2013 strain identified in August 2013, but are distinct from those of other human and avian A(H7N9) strains. The other internal genes NP and PA genes are more closely related to those of non-A(H7N9) avian influenza A viruses. A unique PA L336M mutation, associated with increased polymerase activity, was found. The patient required salvage by extracorporeal membrane oxygenation. Conclusions The A/Hong Kong/470129/2013 virus is a novel reassortant derived from A/Guangdong/1/2013 virus. The unique mutation PA L336M may enhance viral replication and therefore disease severity.


Journal of Immunology | 2014

NF90 Exerts Antiviral Activity through Regulation of PKR Phosphorylation and Stress Granules in Infected Cells

Xi Wen; Xiaofeng Huang; Bobo Wing-Yee Mok; Yixin Chen; Min Zheng; Siu-Ying Lau; Pui Wang; Wenjun Song; Dong-Yan Jin; Kwok-Yung Yuen; Honglin Chen

NF90 was shown to exhibit broad antiviral activity against several viruses, but detailed mechanisms remain unclear. In this study, we examined the molecular basis for the inhibitory effect of NF90 on virus replication mediated through protein kinase (PKR)-associated translational regulation. We first verified the interaction between NF90 and PKR in mammalian cells and showed that NF90 interacts with PKR through its C-terminal and that the interaction is independent of NF90 RNA-binding properties. We further showed that knockdown of NF90 resulted in significantly lower levels of PKR phosphorylation in response to dsRNA induction and influenza virus infection. We also showed that high concentrations of NF90 exhibit negative regulatory effects on PKR phosphorylation, presumably through competition for dsRNA via the C-terminal RNA-binding domain. PKR activation is essential for the formation of stress granules in response to dsRNA induction. Our results showed that NF90 is a component of stress granules. In NF90-knockdown cells, dsRNA treatment induced significantly lower levels of stress granules than in control cells. Further evidence for an NF90–PKR antiviral pathway was obtained using an NS1 mutated influenza A virus specifically attenuated in its ability to inhibit PKR activation. This mutant virus replicated indistinguishably from wild-type virus in NF90-knockdown cells, but not in scrambled control cells or Vero cells, indicating that NF90’s antiviral function occurs through interaction with PKR. Taken together, these results reveal a yet-to-be defined host antiviral mechanism in which NF90 upregulation of PKR phosphorylation restricts virus infection.


Antiviral Research | 2012

The 2008–2009 H1N1 influenza virus exhibits reduced susceptibility to antibody inhibition: implications for the prevalence of oseltamivir resistant variant viruses

Wai Lan Wu; Siu-Ying Lau; Yixin Chen; Genyan Wang; Bobo Wing-Yee Mok; Xi Wen; Pui Wang; Wenjun Song; Tianwei Lin; Kwok-Hung Chan; Kwok-Yung Yuen; Honglin Chen

A naturally-occurring H275Y oseltamivir resistant variant of influenza A (H1N1) virus emerged in 2007, subsequently becoming prevalent worldwide, via an undetermined mechanism. To understand the antigenic properties of the H275Y variant, oseltamivir resistant and susceptible strains of H1N1 viruses were analyzed by hemagglutination inhibition (HI) and microneutralization assays. HI analysis with H1-positive sera obtained from seasonal flu vaccine immunized and non-immunized individuals, and H1-specific monoclonal antibodies, revealed that resistant strains exhibited a reduced reactivity to these antisera and antibodies in the HI assay, as compared to susceptible strains. Neutralization assay testing demonstrated that oseltamivir resistant H1N1 strains are also less susceptible to antibody inhibition during infection. Mice inoculated with a resistant clinical isolate exhibit 4-fold lower virus-specific antibody titers than mice infected with a susceptible strain under the same conditions. Resistant and sensitive variants of 2009 pandemic H1N1 virus did not exhibit such differences. While HA1 and NA phylogenetic trees show that both oseltamivir resistant and susceptible strains belong to clade 2B, NA D354G and HA A189T substitutions were found exclusively, and universally, in oseltamivir resistant variants. Our results suggest that the reduced susceptibility to antibody inhibition and lesser in vivo immunogenicity of the oseltamivir resistant 2008-2009 H1N1 influenza A virus is conferred by coupled NA and HA mutations, and may contribute to the prevalence of this H1N1 variant.


Clinical Microbiology and Infection | 2011

Serological survey of antibodies to influenza A viruses in a group of people without a history of influenza vaccination

Yixin Chen; Qingbing Zheng; Kunyu Yang; Fen Zeng; Siu-Ying Lau; Wai Lan Wu; Shou-Jie Huang; Jun Zhang; Honglin Chen; Ningshao Xia

A serological survey for antibodies to influenza viruses was performed in China on a group of people without a history of influenza vaccination. Using the haemagglutination inhibition (HI) assay, we found seropositivity rates for seasonal H3N2 to be significantly higher than those for seasonal H1N1. Samples positive for antibodies to the pandemic (H1N1) 2009 virus increased from 0.6% pre-outbreak to 4.5% (p <0.01) at 1 year post-outbreak. Interestingly, HI and neutralization tests showed that 1.4% of people in the group have antibodies recognizing H9N2 avian influenza viruses, suggesting that infection with this subtype may be more common than previously thought.


BMC Infectious Diseases | 2014

Detection of a novel avian influenza A (H7N9) virus in humans by multiplex one-step real-time RT-PCR assay

Jian-Gao Fan; David Cui; Siu-Ying Lau; Guoliang Xie; Xichao Guo; Shufa Zheng; Xiaofeng Huang; Shigui Yang; Xianzhi Yang; Zhaoxia Huo; Fei Yu; Jianzhou Lou; Li Tian; Xuefen Li; Yuejiao Dong; Qiaoyun Zhu; Yan Chen

BackgroundA novel avian influenza A (H7N9) virus emerged in eastern China in February 2013. 413 confirmed human cases, including 157 deaths, have been recorded as of July 31, 2014.MethodsClinical specimens, including throat swabs, sputum or tracheal aspirates, etc., were obtained from patients exhibiting influenza-like illness (ILIs), especially from those having pneumonia and a history of occupational exposure to poultry and wild birds. RNA was extracted from these samples and a multiplex one-step real-time RT-PCR assay was developed to specifically detect the influenza A virus (FluA). PCR primers targeted the conserved M and Rnase P (RP) genes, as well as the hemagglutinin and neuraminidase genes of the H7N9 virus.ResultsThe multiplex assay specifically detected the avian H7N9 virus, and no cross-reaction with other common respiratory pathogens was observed. The detection limit of the assay was approximately 0.05 50% tissue culture infective doses (TCID50), or 100 copies per reaction. Positive detection of the H7N9 virus in sputum/tracheal aspirates was higher than in throat swabs during the surveillance of patients with ILIs. Additionally, detection of the matrix (M) and Rnase P genes aided in the determination of the novel avian H7N9 virus and ensured the quality of the clinical samples.ConclusionsThese results demonstrate that the multiplex assay detected the novel avian H7N9 virus with high specificity and sensitivity, which is essential for the early diagnosis and treatment of infected patients.

Collaboration


Dive into the Siu-Ying Lau's collaboration.

Top Co-Authors

Avatar

Honglin Chen

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pui Wang

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenjun Song

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Zheng

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wai Lan Wu

University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge