Sivalee Suriyapee
Chulalongkorn University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sivalee Suriyapee.
Journal of Radiation Research | 2013
Taweap Sanghangthum; Sivalee Suriyapee; Somyot Srisatit; Todd Pawlicki
This work applied statistical process control to establish the control limits of the % gamma pass of patient-specific intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) quality assurance (QA), and to evaluate the efficiency of the QA process by using the process capability index (Cpml). A total of 278 IMRT QA plans in nasopharyngeal carcinoma were measured with MapCHECK, while 159 VMAT QA plans were undertaken with ArcCHECK. Six megavolts with nine fields were used for the IMRT plan and 2.5 arcs were used to generate the VMAT plans. The gamma (3%/3 mm) criteria were used to evaluate the QA plans. The % gamma passes were plotted on a control chart. The first 50 data points were employed to calculate the control limits. The Cpml was calculated to evaluate the capability of the IMRT/VMAT QA process. The results showed higher systematic errors in IMRT QA than VMAT QA due to the more complicated setup used in IMRT QA. The variation of random errors was also larger in IMRT QA than VMAT QA because the VMAT plan has more continuity of dose distribution. The average % gamma pass was 93.7% ± 3.7% for IMRT and 96.7% ± 2.2% for VMAT. The Cpml value of IMRT QA was 1.60 and VMAT QA was 1.99, which implied that the VMAT QA process was more accurate than the IMRT QA process. Our lower control limit for % gamma pass of IMRT is 85.0%, while the limit for VMAT is 90%. Both the IMRT and VMAT QA processes are good quality because Cpml values are higher than 1.0.
Journal of Applied Clinical Medical Physics | 2013
Taweap Sanghangthum; Sivalee Suriyapee; Somyot Srisatit; Todd Pawlicki
Shewhart control charts have previously been suggested as a process control tool for use in routine linear accelerator (linac) output verifications. However, a comprehensive approach to process control has not been investigated for linac output verifications. The purpose of this work is to investigate a comprehensive process control approach to linac output constancy quality assurance (QA). The RBA‐3 dose constancy check was used to verify outputs of photon beams and electron beams delivered by a Varian Clinac 21EX linac. The data were collected during 2009 to 2010. Shewhart‐type control charts, exponentially weighted moving average (EWMA) charts, and capability indices were applied to these processes. The Shewhart‐type individuals chart (X‐chart) was used and the number of data points used to calculate the control limits was varied. The parameters tested for the EWMA charts (smoothing parameter (λ) and the control limit width (L)) were λ=0.05, L=2.492; λ=0.10, L=2.703; and λ=0.20, L=2.860, as well as the number of points used to estimate the initial process mean and variation. Lastly, the number of in‐control data points used to determine process capability (Cp) and acceptability (Cpk) were investigated, comparing the first in‐control run to the longest in‐control run of the process data. Cp and Cpk values greater than 1.0 were considered acceptable. The 95% confidence intervals were reported. The X‐charts detected systematic errors (e.g., device setup errors). In‐control run lengths on the X‐charts varied from 5 to 30 output measurements (about one to seven months). EWMA charts showed in‐control runs ranging from 9 to 33 output measurements (about two to eight months). The Cp and Cpk ratios are higher than 1.0 for all energies, except 12 and 20 MeV. However, 10 MV and 6, 9, and 16 MeV were in question when considering the 95% confidence limits. The X‐chart should be calculated using 8–12 data points. For EWMA chart, using 4 data points is sufficient to calculate the initial mean and variance of the process. The EWMA limits should be calculated with λ=0.10, L=2.703. At least 25–30 in‐control data points should be used to calculate the Cp and Cpk indices. PACS number: 89
Physics in Medicine and Biology | 2013
Taweap Sanghangthum; Sivalee Suriyapee; G Kim; Todd Pawlicki
The result from any assurance measurement needs to be checked against some limits for acceptability. There are two types of limits; those that define clinical acceptability (action limits) and those that are meant to serve as a warning that the measurement is close to the action limits (tolerance limits). Currently, there is no standard procedure to set these limits. In this work, we propose an operational procedure to set tolerance limits and action limits. The approach to establish the limits is based on techniques of quality engineering using control charts and a process capability index. The method is different for tolerance limits and action limits with action limits being categorized into those that are specified and unspecified. The procedure is to first ensure process control using the I-MR control charts. Then, the tolerance limits are set equal to the control chart limits on the I chart. Action limits are determined using the Cpm process capability index with the requirements that the process must be in-control. The limits from the proposed procedure are compared to an existing or conventional method. Four examples are investigated: two of volumetric modulated arc therapy (VMAT) point dose quality assurance (QA) and two of routine linear accelerator output QA. The tolerance limits range from about 6% larger to 9% smaller than conventional action limits for VMAT QA cases. For the linac output QA, tolerance limits are about 60% smaller than conventional action limits. The operational procedure describe in this work is based on established quality management tools and will provide a systematic guide to set up tolerance and action limits for different equipment and processes.
Australasian Physical & Engineering Sciences in Medicine | 2015
W. H. Round; S. Jafari; Tomas Kron; H. A. Azhari; S. Chhom; Y. Hu; G. F. Mauldon; K. Y. Cheung; T. Kuppusamy; Supriyanto Ardjo Pawiro; Lukmanda Evan Lubis; Djarwani S. Soejoko; Freddy Haryanto; M. Endo; Y. Han; T. S. Suh; Kwan-Hoong Ng; A. Luvsan-Ish; S. O. Maung; P. P. Chaurasia; S. M. A. Jafri; S. Farrukh; A. Peralta; H. J. Toh; Sivananthan Sarasanandarajah; A. C. Shiau; Anchali Krisanachinda; Sivalee Suriyapee; S. Vinijsorn; T. C. Nguyen
AbstractThe history of medical physics in Asia-Oceania goes back to the late nineteenth century when X-ray imaging was introduced, although medical physicists were not appointed until much later. Medical physics developed very quickly in some countries, but in others the socio-economic situation as such prevented it being established for many years. In others, the political situation and war has impeded its development. In many countries their medical physics history has not been well recorded and there is a danger that it will be lost to future generations. In this paper, brief histories of the development of medical physics in most countries in Asia-Oceania are presented by a large number of authors to serve as a record. The histories are necessarily brief; otherwise the paper would quickly turn into a book of hundreds of pages. The emphasis in each history as recorded here varies as the focus and culture of the countries as well as the length of their histories varies considerably.
Journal of Radiation Research | 2015
Sivalee Suriyapee; Phongpheath Pengvanich
A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received.
Biomedical Imaging and Intervention Journal | 2008
Sivalee Suriyapee; N Pitaxtarnin; Sornjarod Oonsiri; Chotika Jumpangern; I Israngkul Na Ayuthaya
Purpose: To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. Materials and methods: A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm2. Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm2 and compared with ion chamber data. Scanditronix/Wellhofer OmniProTM IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Results: Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm2 at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and depths studied. Dose profiles measured with EDR2 film were consistent with those measured with an ion chamber. The optimal sensitometric curve was acquired by irradiating film at a depth of 5 cm with doses ranging from 20 to 450 cGy with a 3×3 cm2 multileaf collimator. The optimal sensitometric curve allowed accurate determination of the absolute dose distribution. In almost 200 cases of dynamic IMRT plan verification with EDR2 film, the difference between measured and calculated dose was generally less than 3% and with 3 mm distance to agreement when using gamma value verification. Conclusion: EDR2 film can be used for accurate verification of composite isodose distributions of dynamic IMRT when the optimal sensitometric curve has been established.
Biomedical Imaging and Intervention Journal | 2007
N Naiyanet; Sornjarod Oonsiri; C Lertbutsayanukul; Sivalee Suriyapee
Purpose: To measure the interfraction setup variation of patient undergoing intensity-modulated radiation therapy (IMRT) of head and neck cancer. The data was used to define adequate treatment CTV-to-PTV margin. Materials and methods: During March to September 2006, data was collected from 9 head and neck cancer patients treated with dynamic IMRT using 6 MV X-ray beam from Varian Clinac 23EX. Weekly portal images of setup fields which were anterior-posterior and lateral portal images were acquired for each patient with an amorphous silicon EPID, Varian aS500. These images were matched with the reference image from Varian Acuity simulator using the Varis vision software (Version 7.3.10). Six anatomical landmarks were selected for comparison. The displacement of portal image from the reference image was recorded in X (Left-Right, L-R), Y (Superior-Inferior, S-I) direction for anterior field and Z (Anterior-Posterior, A-P), Y (S-I) direction for lateral field. The systematic and random error for individual and population were calculated. Then the population-based margins were obtained. Results: A total of 135 images (27 simulation images and 108 portal images) and 405 match points was evaluated. The systematic error ranged from 0 to 7.5 mm and the random error ranged from 0.3 to 4.8 mm for all directions. The population-based margin ranged from 2.3 to 4.5 mm (L-R), 3.5 to 4.9 mm (S-I) for anterior field and 3.4 to 4.7 mm (A-P), 2.6 to 3.7 mm (S-I) for the lateral field. These margins were comparable to the margin that was prescribed at the King Chulalongkorn Memorial Hospital (5-10 mm) for head and neck cancer. Conclusion: The population-based margin is less than 5 mm, thus the margin provides sufficient coverage for all of the patients.
Asian Biomedicine | 2010
Thanarpan Peerawong; Chonlakiet Khorprasert; Sivalee Suriyapee; Taweap Sanghangthum; Isra Israngkul Na Ayuthaya; Kanjana Shotelersuk
Background: Radiotherapy in cholangiocrcinoma has to overcome organ tolerance of the upper abdomen. Hi-technology radiotherapy may improve conformity and reduce dose to those organ. Objective: Quantitatively compare the dosimetry of conformal dynamic arc radiotherapy (CD-arcRT) and intensity modulated radiotherapy (IMRT) in unresectable cholangiocarcinoma. Material and methods: Eleven cases of unresectable cholangiocarcinoma were re-planned with IMRT and CDarcRT at King Chulalongkhorn Memorial Hospital between 20 September 2004 and 31 December 2005. Both the planning techniques were evaluated using the dose volume histogram of the planning target volume and organ at risk. The conformation number and dose to critical normal structures were used to determine the techniques. Results: IMRT technique was significantly conformed to the planning target volume than CD-arcRT in term of conformation number. For critical structure, IMRT significantly reduced the radiation dose to liver in terms of mean liver dose, V30Gy and V20Gy of the right kidney. Conclusion: The advantage of IMRT was more conformity and reduced dose to critical structure compared with CD-arcRT, but there was no difference between these techniques in terms of V20Gy of left kidney and maximum dose to the spinal cord.
International Journal of Radiation Oncology Biology Physics | 2004
Prasert Lertsanguansinchai; Chawalit Lertbutsayanukul; Kanjana Shotelersuk; Chonlakiet Khorprasert; Rojpornpradit P; Taywin Chottetanaprasith; Apiradee Srisuthep; Sivalee Suriyapee; Chotika Jumpangern; Damrong Tresukosol; Chulee Charoonsantikul
Journal of the Medical Association of Thailand Chotmaihet thangphaet | 2007
Sornjarod Oonsiri; Chotika Jumpangern; Taweap Sanghangthum; Anchali Krisanachinda; Sivalee Suriyapee