Sivan Vadakkadath Meethal
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sivan Vadakkadath Meethal.
Circulation | 2005
Andrew J. Lokuta; Nathan A. Maertz; Sivan Vadakkadath Meethal; Katherine T. Potter; Timothy J. Kamp; Héctor H. Valdivia; Robert A. Haworth
Background—Reduced sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a isoform) activity is a major determinant of reduced contractility in heart failure. Ca2+-ATPase inactivation can occur through SERCA2a nitration. We therefore investigated the role of SERCA2a nitration in heart failure. Methods and Results—We measured SERCA2a levels and nitrotyrosine levels in tissue from normal and failing human hearts using Western blots. We found that nitrotyrosine levels in idiopathic dilated cardiomyopathic (DCM) hearts were almost double those of control hearts in age-matched groups. Nitrotyrosine was dominantly present in a single protein with the molecular weight of SERCA2a, and immunoprecipitation confirmed that the protein recognized by the nitrotyrosine antibody was SERCA2a. There was a positive correlation between the time to half relaxation and the nitrotyrosine/SERCA2a content (P<0.01) in myocytes isolated from control and DCM hearts. In experiments with isolated SR vesicles from porcine hearts, we also showed that the Ca pump is inactivated by peroxynitrite exposure, and inactivation was prevented by protein kinase A pretreatment. Conclusions—We conclude that SERCA2a inactivation by nitration may contribute to Ca pump failure and hence heart failure in DCM.
Expert Opinion on Investigational Drugs | 2007
Andrea C. Wilson; Sivan Vadakkadath Meethal; Richard L. Bowen; Craig S. Atwood
Leuprolide acetate is a synthetic nonapeptide that is a potent gonadotropin-releasing hormone receptor (GnRHR) agonist used for diverse clinical applications, including the treatment of prostate cancer, endometriosis, uterine fibroids, central precocious puberty and in vitro fertilization techniques. As its basic mechanism of action, leuprolide acetate suppresses gonadotrope secretion of luteinizing hormone and follicle-stimulating hormone that subsequently suppresses gonadal sex steroid production. In addition, leuprolide acetate is presently being tested for the treatment of Alzheimers disease, polycystic ovary syndrome, functional bowel disease, short stature, premenstrual syndrome and even as an alternative for contraception. Mounting evidence suggests that GnRH agonist suppression of serum gonadotropins may also be important in many of the clinical applications described above. Moreover, the presence of GnRHR in a multitude of non-reproductive tissues including the recent discovery of GnRHR expression in the hippocampi and cortex of the human brain indicates that GnRH analogs such as leuprolide acetate may also act directly via tissue GnRHRs to modulate (brain) function. Thus, the molecular mechanisms underlying the therapeutic effect of GnRH analogs in the treatment of these diseases may be more complex than originally thought. These observations also suggest that the potential uses of GnRH analogs in the modulation of GnRH signaling and treatment of disease has yet to be fully realized.
Endocrine | 2005
Sivan Vadakkadath Meethal; Mark A. Smith; Richard L. Bowen; Craig S. Atwood
Although not traditionally thought of as regulators of neuronal function, the hypothalamic-pituitary-gonadal (HPG) hormones luteinizing hormone (LH), gonadotropin-releasing hormone (GnRH), and activins possess neuronal receptors. These receptors are found throughout the limbic system on a number of different cell types, and, like reproductive tissues, the expression of these receptors is regulated by hormonal feedback loops. These hormones and their receptors regulate structure and a diverse range of functions in the brain. Therefore, it is not surprising that the dysregulation of the HPG axis with menopause and andropause (leading to elevated LH, GnRH, and activin signaling but decreased sex steroid signaling) might promote alterations in both the structure and function of neuronal cells. To date, most evidence has accumulated for a role of LH in promoting neurodegenerative changes. LH is known to cross the blood-brain barrier, receptors for LH are most concentrated in the hippocampus, that region of the brain most vulnerable to Alzheimer’s disease (AD) and LH is significantly elevated in both the serum and the pyramidal neurons of AD subjects. LH promotes the amyloidogenic processing of the amyloid-β precursor protein in vitro, and the antigonadotropin leuprolide acetate decreases amyloid generation in mice. Moreover, leuprolide acetate improves the cognitive performance and decreases amyloid-β deposition in aged transgenic mice carrying the Swedish AβPP mutation. Therefore, the elevation of LH with the dysregulation of the HPG axis at menopause and andropause is a physiologically relevant signal that could promote neurodegeneration. Epidemiological support for a role of LH/GnRH in AD is evidenced by a reduction in neurodegenerative disease among prostate cancer patients a group known to GnRH agonists. Clinical trials are underway for the treatment of AD using GnRH analogs and should provide further insights into the gonadotropin connection in AD.
Journal of Biological Chemistry | 2009
Prashob Porayette; Miguel J. Gallego; Maria M. Kaltcheva; Richard L. Bowen; Sivan Vadakkadath Meethal; Craig S. Atwood
The amyloid-β precursor protein (AβPP) is a ubiquitously expressed transmembrane protein whose cleavage product, the amyloid-β (Aβ) protein, is deposited in amyloid plaques in neurodegenerative conditions such as Alzheimer disease, Down syndrome, and head injury. We recently reported that this protein, normally associated with neurodegenerative conditions, is expressed by human embryonic stem cells (hESCs). We now report that the differential processing of AβPP via secretase enzymes regulates the proliferation and differentiation of hESCs. hESCs endogenously produce amyloid-β, which when added exogenously in soluble and fibrillar forms but not oligomeric forms markedly increased hESC proliferation. The inhibition of AβPP cleavage by β-secretase inhibitors significantly suppressed hESC proliferation and promoted nestin expression, an early marker of neural precursor cell (NPC) formation. The induction of NPC differentiation via the non-amyloidogenic pathway was confirmed by the addition of secreted AβPPα, which suppressed hESC proliferation and promoted the formation of NPCs. Together these data suggest that differential processing of AβPP is normally required for embryonic neurogenesis.
Biochimica et Biophysica Acta | 2008
Andrea C. Wilson; Luca Clemente; Tianbing Liu; Richard L. Bowen; Sivan Vadakkadath Meethal; Craig S. Atwood
Reproductive hormones have been demonstrated to modulate both gap and tight junction protein expression in the ovary and other reproductive tissues, however the effects of changes in reproductive hormones on the selective permeability of the blood-brain barrier (BBB) remain unclear. Age-related declines in BBB integrity correlate with the loss of serum sex steroids and increase in gonadotropins with menopause/andropause. To examine the effect of reproductive senescence on BBB permeability and gap and tight junction protein expression/localization, female mice at 3 months of age were either sham operated (normal serum E2 and gonadotropins), ovariectomized (low serum E2 and high serum gonadotropins) or ovariectomized and treated with the GnRH agonist leuprolide acetate (low serum E2 and gonadotropins). Ovariectomy induced a 2.2-fold increase in Evans blue dye extravasation into the brain. The expression and localization of the cytoplasmic membrane-associated tight junction protein zona occludens 1 (ZO-1) in microvessels was not altered among groups indicating that the increased paracellular permeability was not due to changes in this tight junction protein. However, ovariectomy induced a redistribution of the gap junction protein connexin-43 (Cx43) such that immunoreactivity relocalized from along the extracellular microvascular endothelium to become associated with endothelial cells. An increase in Cx43 expression in the mouse brain following ovariectomy was suppressed in ovariectomized animals treated with leuprolide acetate, indicating that serum gonadotropins rather than sex steroids were modulating Cx43 expression. These results suggest that elevated serum gonadotropins following reproductive senescence may be one possible cause of the loss of selective permeability of the BBB at this time. Furthermore, these findings implicate Cx43 in mediating changes in BBB permeability, and serum gonadotropins in the cerebropathophysiology of age-related neurodegenerative diseases such as stroke and Alzheimers disease.
BMC Evolutionary Biology | 2006
Sivan Vadakkadath Meethal; Miguel J. Gallego; Ryan J. Haasl; Stephen J Petras; Jean-Yves Sgro; Craig S. Atwood
BackgroundThe Caenorhabditis elegans genome is known to code for at least 1149 G protein-coupled receptors (GPCRs), but the GPCR(s) critical to the regulation of reproduction in this nematode are not yet known. This study examined whether GPCRs orthologous to human gonadotropin-releasing hormone receptor (GnRHR) exist in C. elegans.ResultsOur sequence analyses indicated the presence of two proteins in C. elegans, one of 401 amino acids [GenBank: NP_491453; WormBase: F54D7.3] and another of 379 amino acids [GenBank: NP_506566; WormBase: C15H11.2] with 46.9% and 44.7% nucleotide similarity to human GnRHR1 and GnRHR2, respectively. Like human GnRHR1, structural analysis of the C. elegans GnRHR1 orthologue (Ce-GnRHR) predicted a rhodopsin family member with 7 transmembrane domains, G protein coupling sites and phosphorylation sites for protein kinase C. Of the functionally important amino acids in human GnRHR1, 56% were conserved in the C. elegans orthologue. Ce-GnRHR was actively transcribed in adult worms and immunoanalyses using antibodies generated against both human and C. elegans GnRHR indicated the presence of a 46-kDa protein, the calculated molecular mass of the immature Ce-GnRHR. Ce-GnRHR staining was specifically localized to the germline, intestine and pharynx. In the germline and intestine, Ce-GnRHR was localized specifically to nuclei as revealed by colocalization with a DNA nuclear stain. However in the pharynx, Ce-GnRHR was localized to the myofilament lattice of the pharyngeal musculature, suggesting a functional role for Ce-GnRHR signaling in the coupling of food intake with reproduction. Phylogenetic analyses support an early evolutionary origin of GnRH-like receptors, as evidenced by the hypothesized grouping of Ce-GnRHR, vertebrate GnRHRs, a molluscan GnRHR, and the adipokinetic hormone receptors (AKHRs) and corazonin receptors of arthropods.ConclusionThis is the first report of a GnRHR orthologue in C. elegans, which shares significant similarity with insect AKHRs. In vertebrates, GnRHRs are central components of the reproductive endocrine system, and the identification of a GnRHR orthologue in C. elegans suggests the potential use of C. elegans as a model system to study reproductive endocrinology.
Stem Cell Research & Therapy | 2010
Miguel J. Gallego; Prashob Porayette; Maria M. Kaltcheva; Richard L. Bowen; Sivan Vadakkadath Meethal; Craig S. Atwood
IntroductionThe physiological signals that direct the division and differentiation of the zygote to form a blastocyst, and subsequent embryonic stem cell division and differentiation during early embryogenesis, are unknown. Although a number of growth factors, including the pregnancy-associated hormone human chorionic gonadotropin (hCG) are secreted by trophoblasts that lie adjacent to the embryoblast in the blastocyst, it is not known whether these growth factors directly signal human embryonic stem cells (hESCs).MethodsHere we used hESCs as a model of inner cell mass differentiation to examine the hormonal requirements for the formation of embryoid bodies (EBs; akin to blastulation) and neuroectodermal rosettes (akin to neurulation).ResultsWe found that hCG promotes the division of hESCs and their differentiation into EBs and neuroectodermal rosettes. Inhibition of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) signaling suppresses hESC proliferation, an effect that is reversed by treatment with hCG. hCG treatment rapidly upregulates steroidogenic acute regulatory protein (StAR)-mediated cholesterol transport and the synthesis of progesterone (P4). hESCs express P4 receptor A, and treatment of hESC colonies with P4 induces neurulation, as demonstrated by the expression of nestin and the formation of columnar neuroectodermal cells that organize into neural tubelike rosettes. Suppression of P4 signaling by withdrawing P4 or treating with the P4-receptor antagonist RU-486 inhibits the differentiation of hESC colonies into EBs and rosettes.ConclusionsOur findings indicate that hCG signaling via LHCGR on hESC promotes proliferation and differentiation during blastulation and neurulation. These findings suggest that trophoblastic hCG secretion and signaling to the adjacent embryoblast could be the commencement of trophic support by placental tissues in the growth and development of the human embryo.
Journal of Neurochemistry | 2009
Sivan Vadakkadath Meethal; Tianbing Liu; Hsien W. Chan; Erika Ginsburg; Andrea C. Wilson; Danielle N. Gray; Richard L. Bowen; Barbara K. Vonderhaar; Craig S. Atwood
Brain sex steroids are derived from both peripheral (primarily gonadal) and local (neurosteroids) sources and are crucial for neurogenesis, neural differentiation and neural function. The mechanism(s) regulating the production of neurosteroids is not understood. To determine whether hypothalamic‐pituitary‐gonadal axis components previously detected in the extra‐hypothalamic brain comprise a feedback loop to regulate neuro‐sex steroid (NSS) production, we assessed dynamic changes in expression patterns of steroidogenic acute regulatory (StAR) protein, a key regulator of steroidogenesis, and key hypothalamic‐pituitary‐gonadal endocrine receptors, by modulating peripheral sex hormone levels in female mice. Ovariectomy (OVX; high serum gonadotropins, low serum sex steroids) had a differential effect on StAR protein levels in the extrahypothalamic brain; increasing the 30‐ and 32‐kDa variants but decreasing the 37‐kDa variant and is indicative of cholesterol transport into mitochondria for steroidogenesis. Treatment of OVX animals with E2, P4, or E2 + P4 for 3 days, which decreases OVX‐induced increases in GnRH/gonadotropin production, reversed this pattern. Suppression of gonadotropin levels in OVX mice using the GnRH agonist leuprolide acetate inhibited the processing of the 37‐kDa StAR protein into the 30‐kDa StAR protein, confirming that the differential processing of brain StAR protein is regulated by gonadotropins. OVX dramatically suppressed extra‐hypothalamic brain gonadotropin‐releasing hormone 1 receptor expression, and was further suppressed in E2‐ or P4‐treated OVX mice. Together, these data indicate the existence of endocrine and autocrine/paracrine feedback loops that regulate NSS synthesis. Further delineation of these feedback loops that regulate NSS production will aid in developing therapies to maintain brain sex steroid levels and cognition.
Stem Cells and Development | 2009
Miguel J. Gallego; Prashob Porayette; Maria M. Kaltcheva; Sivan Vadakkadath Meethal; Craig S. Atwood
The growth factors that drive the division and differentiation of stem cells during early human embryogenesis are unknown. The secretion of endorphins, progesterone (P(4)), human chorionic gonadotropin, 17beta-estradiol, and gonadotropin-releasing hormone by trophoblasts that lie adjacent to the embryoblast in the blastocyst suggests that these pregnancy-associated factors may directly signal the growth and development of the embryoblast. To test this hypothesis, we treated embryoblast-derived human embryonic stem cells (hESCs) with ICI 174,864, a delta-opioid receptor antagonist, and RU-486 (mifepristone), a P(4) receptor competitive antagonist. Both antagonists potently inhibited the differentiation of hESC into embryoid bodies, an in vitro structure akin to the blastocyst containing all three germ layers. Furthermore, these agents prevented the differentiation of hESC aggregates into columnar neuroectodermal cells and their organization into neural tube-like rosettes as determined morphologically. Immunoblot analyses confirmed the obligatory role of these hormones; both antagonists inhibited nestin expression, an early marker of neural precursor cells normally detected during rosette formation. Conversely, addition of P(4) to hESC aggregates induced nestin expression and the formation of neuroectodermal rosettes. These results demonstrate that trophoblast-associated hormones induce blastulation and neurulation during early human embryogenesis.
BMC Medical Genetics | 2008
Ryan J. Haasl; M Reza Ahmadi; Sivan Vadakkadath Meethal; Carey E. Gleason; Sterling C. Johnson; Sanjay Asthana; Richard L. Bowen; Craig S. Atwood
Genetic and biochemical studies support the apolipoprotein E (APOE) ε4 allele as a major risk factor for late-onset Alzheimers disease (AD), though ~50% of AD patients do not carry the allele. APOE transports cholesterol for luteinizing hormone (LH)-regulated steroidogenesis, and both LH and neurosteroids have been implicated in the etiology of AD. Since polymorphisms of LH beta-subunit (LHB) and its receptor (LHCGR) have not been tested for their association with AD, we scored AD and age-matched control samples for APOE genotype and 14 polymorphisms of LHB and LHCGR. Thirteen gene-gene interactions between the loci of LHB, LHCGR, and APOE were associated with AD. The most strongly supported of these interactions was between an LHCGR intronic polymorphism (rs4073366; lhcgr2) and APOE in males, which was detected using all three interaction analyses: linkage disequilibrium, multi-dimensionality reduction, and logistic regression. While the APOE ε4 allele carried significant risk of AD in males [p = 0.007, odds ratio (OR) = 3.08(95%confidence interval: 1.37, 6.91)], ε4-positive males carrying 1 or 2 C-alleles at lhcgr2 exhibited significantly decreased risk of AD [OR = 0.06(0.01, 0.38); p = 0.003]. This suggests that the lhcgr2 C-allele or a closely linked locus greatly reduces the risk of AD in males carrying an APOE ε4 allele. The reversal of risk embodied in this interaction powerfully supports the importance of considering the role gene-gene interactions play in the etiology of complex biological diseases and demonstrates the importance of using multiple analytic methods to detect well-supported gene-gene interactions.