Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siyu Zeng is active.

Publication


Featured researches published by Siyu Zeng.


Journal of Environmental Sciences-china | 2013

Inactivation, reactivation and regrowth of indigenous bacteria in reclaimed water after chlorine disinfection of a municipal wastewater treatment plant.

Dan Li; Siyu Zeng; April Z. Gu; Miao He; Hanchang Shi

Disinfection of reclaimed water prior to reuse is important to prevent the transmission of pathogens. Chlorine is a widely utilized disinfectant and as such is a leading contender for disinfection of reclaimed water. To understand the risks of chlorination resulting from the potential selection of pathogenic bacteria, the inactivation, reactivation and regrowth rates of indigenous bacteria were investigated in reclaimed water after chlorine disinfection. Inactivation of total coliforms, Enterococcus and Salmonella showed linear correlations, with constants of 0.1384, 0.1624 and 0.057 L/(mg.min) and R2 of 0.7617, 0.8316 and 0.845, respectively. However, inactivation of total viable cells by measurement of metabolic activity typically showed a linear correlation at lower chlorine dose (0-22 (mg-min)/L), and a trailing region with chlorine dose increasing from 22 to 69 (mg.min)/L. Reactivation and regrowth of bacteria were most likely to occur after exposure to lower chlorine doses, and extents of reactivation decreased gradually with increasing chlorine dose. In contrast to total coliforms and Enterococcus, Salmonella had a high level of regrowth and reactivation, and still had 2% regrowth even after chlorination of 69 (mg.min)/L and 24 hr storage. The bacterial compositions were also significantly altered by chlorination and storage of reclaimed water, and the ratio of Salmonella was significantly increased from 0.001% to 0.045% after chlorination of 69 (mg.min)/L and 24 hr storage. These trends indicated that chlorination contributes to the selection of chlorine-resistant pathogenic bacteria, and regrowth of pathogenic bacteria after chlorination in reclaimed water with a long retention time could threaten public health security during wastewater reuse.


Water Science and Technology | 2010

Operational energy performance assessment system of municipal wastewater treatment plants

Lingbo Yang; Siyu Zeng; Jining Chen; Miao He; Wan Yang

Based on the statistical analysis of operational energy consumption and its influential factors from data of 599 Chinese WWTPs in 2006, it is noticed that the most influential factors include treatment technology adopted, treated sewage amount, removed pollutants amount, etc. Using the conclusion above, this paper sets up an integrated system of operational energy performance assessment for municipal wastewater treatment plants. Combining with result from on-spot research and model simulation, the calculating method of benchmark value and score of 7 energy efficiency indicators grouped into 3 levels is stated. Applying the assessment system to three plants, its applicability and objectivity are proved and suggestions to improve energy performance are provided.


Journal of Applied Microbiology | 2011

Monitoring and evaluation of infectious rotaviruses in various wastewater effluents and receiving waters revealed correlation and seasonal pattern of occurrences.

Dan Li; April Z. Gu; Siyu Zeng; Wan Yang; Miao He; Hanchang Shi

Aims:  Sewage systems are important nodes to monitor enteric pathogens transmitted via water. The aim of this study was to assess the presence of rotaviruses in effluents from wastewater treatment plants (WWTPs) and receiving streams in Beijing, China, to evaluate the reductions of rotaviruses in WWTPs and to provide viral fate and transport data for further epidemiological studies.


Environmental Science & Technology | 2016

Water Disinfection Byproducts Induce Antibiotic Resistance-Role of Environmental Pollutants in Resistance Phenomena

Dan Li; Siyu Zeng; Miao He; April Z. Gu

The spread of antibiotic resistance represents a global threat to public health, and has been traditionally attributed to extensive antibiotic uses in clinical and agricultural applications. As a result, researchers have mostly focused on clinically relevant high-level resistance enriched by antibiotics above the minimal inhibitory concentrations (MICs). Here, we report that two common water disinfection byproducts (chlorite and iodoacetic acid) had antibiotic-like effects that led to the evolution of resistant E. coli strains under both high (near MICs) and low (sub-MIC) exposure concentrations. The subinhibitory concentrations of DBPs selected strains with resistance higher than those evolved under above-MIC exposure concentrations. In addition, whole-genome analysis revealed distinct mutations in small sets of genes known to be involved in multiple drug and drug-specific resistance, as well as in genes not yet identified to play role in antibiotic resistance. The number and identities of genetic mutations were distinct for either the high versus low sub-MIC concentrations exposure scenarios. This study provides evidence and mechanistic insight into the sub-MIC selection of antibiotic resistance by antibiotic-like environmental pollutants such as disinfection byproducts in water, which may be important contributors to the spread of global antibiotic resistance. The results from this study open an intriguing and profound question on the roles of large amount and various environmental contaminants play in selecting and spreading the antibiotics resistance in the environment.


Journal of Microbiological Methods | 2011

Development of a combined immunomagnetic separation and quantitative reverse transcription-PCR assay for sensitive detection of infectious rotavirus in water samples

Wan Yang; April Z. Gu; Siyu Zeng; Dan Li; Miao He; Hanchang Shi

A quantitative and rapid detection method for rotavirus in water samples was developed using immunomagnetic separation combined with quantitative reverse transcription-polymerase chain reaction (IMS-RT-qPCR). Magnetic beads coated with antibodies against representative group A rotavirus were used to capture and purify intact rotavirus particles in both artificial and real environmental water sample matrix. Compared to extracting RNA using commercial kits and RT-qPCR assay, the developed IMS-RT-qPCR method increased the detection sensitivity by about one order of magnitude when applied in clean water, with a detection limit of 3.16 50% tissue culture infectious dose (TCID(50))/mL within 5h. This method was compatible with various commonly used virus eluants, including beef extract (BE), beef extract with 0.05M glycine (BEG) and urea arginine phosphate buffer (UAPB). The recovery efficiencies from various eluants using IMS-RT-qPCR are higher than that using direct RT-qPCR method, demonstrating the effectiveness of the IMS step for eliminating inhibitors in the eluant matrix. This method was also successfully applied to purify and detect rotavirus particles seeded in 10(3)-fold concentrated wastewater influent samples. It seemed to reduce the interference from complex sample background and increase the qPCR product reliability comparing to RT-qPCR method without the IMS step. The results indicated that IMS-RT-qPCR is a rapid, sensitive and reliable tool for detecting rotaviruses in complex water environments.


Journal of Environmental Sciences-china | 2014

Quantification of viable bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR)

Dan Li; Tiezheng Tong; Siyu Zeng; Yiwen Lin; Wu Sx; Miao He

The detection of viable bacteria in wastewater treatment plants (WWTPs) is very important for public health, as WWTPs are a medium with a high potential for waterborne disease transmission. The aim of this study was to use propidium monoazide (PMA) combined with the quantitative polymerase chain reaction (PMA-qPCR) to selectively detect and quantify viable bacteria cells in full-scale WWTPs in China. PMA was added to the concentrated WWTP samples at a final concentration of 100 micromol/L and the samples were incubated in the dark for 5 min, and then lighted for 4 min prior to DNA extraction and qPCR with specific primers for Escherichia coli and Enterococci, respectively. The results showed that PMA treatment removed more than 99% of DNA from non-viable cells in all the WWTP samples, while matrices in sludge samples markedly reduced the effectiveness of PMA treatment. Compared to qPCR, PMA-qPCR results were similar and highly linearly correlated to those obtained by culture assay, indicating that DNA from non-viable cells present in WWTP samples can be eliminated by PMA treatment, and that PMA-qPCR is a reliable method for detection of viable bacteria in environmental samples. This study demonstrated that PMA-qPCR is a rapid and selective detection method for viable bacteria in WWTP samples, and that WWTPs have an obvious function in removing both viable and non-viable bacteria. The results proved that PMA-qPCR is a promising detection method that has a high potential for application as a complementary method to the standard culture-based method in the future.


Chemosphere | 2016

Bacterial regrowth in water reclamation and distribution systems revealed by viable bacterial detection assays

Yiwen Lin; Dan Li; April Z. Gu; Siyu Zeng; Miao He

Microbial regrowth needs to be managed during water reclamation and distribution. The aim of present study was to investigate the removal and regrowth of Escherichia coli (E. coli) and Salmonella in water reclamation and distribution system by using membrane integrity assay (PMA-qPCR), reverse transcriptional activity assay (Q-RT-PCR) and culture-based assay, and also to evaluate the relationships among bacterial regrowth, and environmental factors in the distribution system. The results showed that most of the water reclamation processes potentially induced bacteria into VBNC state. The culturable E. coli and Salmonella regrew 1.8 and 0.7 log10 in distribution system, which included reactivation of bacteria in the viable but non-culturable (VBNC) state and reproduction of culturable bacteria. The regrowth of culturable E. coli and Salmonella in the distribution system mainly depended on the residual chlorine levels, with correlations (R(2)) of -0.598 and -0.660. The abundances of membrane integrity and reverse transcriptional activity bacteria in reclamation effluents had significant correlations with the culturable bacteria at the end point of the distribution system, demonstrating that PMA-qPCR and Q-RT-PCR are sensitive and accurate tools to determine and predict bacterial regrowth in water distribution systems. This study has improved our understanding of microbial removal and regrowth in reclaimed water treatment and distribution systems. And the results also recommended that more processes should be equipped to remove viable bacteria in water reclamation plants for the sake of inhibition microbial regrowth during water distribution and usages.


International Journal of Sediment Research | 2013

Toxicity assessment of metals in sediment from the lower reaches of the Haihe River Basin in China

Siyu Zeng; Xin Dong; Jining Chen

Abstract The aqueous environmental quality of the Haihe River Basin is crucial for the ecological health of local catchments and the Bohai Sea. For the routine management neglected sediment tests and no legitimate tool supported the toxicity evaluation yet, one supplementary monitoring was implemented to examine the occurrence and toxic level of sediment metals in the lower reaches of the Haihe River Basin in 2009. Both world-widely used consensus-based sediment quality guidelines and Chinas environmental quality standard for soils (EQSS) were used as assessment tools. Cu, Zn, As, Hg, Cd, and Pb were detected in all 24 samples, while Cr was detected in 18 samples. Assessment results showed 9 samples were toxic and the most dominant toxic element was As. Although the river water quality is getting better, sediment metals have accumulated over thirty years due to continuous industrial development, with toxicity far beyond safety limitations. The highest toxicity levels were encountered in Binhai New Area, suggesting three rivers should be given priority for restoration. It is found that EQSS is also applicable for sediment toxicity assessment until a dedicated tool for Haihe River Basin is available, except for that EQSS is too conservative for Pb.


Water Research | 2017

Enhancing future resilience in urban drainage system: Green versus grey infrastructure

Xin Dong; Hao Guo; Siyu Zeng

In recent years, the concept transition from fail-safe to safe-to-fail makes the application of resilience analysis popular in urban drainage systems (UDSs) with various implications and quantifications. However, most existing definitions of UDSs resilience are confined to the severity of flooding, while uncertainties from climate change and urbanization are not considered. In this research, we take into account the functional variety, topological complexity, and disturbance randomness of UDSs and define a new formula of resilience based on three parts of system severity, i.e. social severity affected by urban flooding, environmental severity caused by sewer overflow, and technological severity considering the safe operation of downstream facilities. A case study in Kunming, China is designed to compare the effect of green and grey infrastructure strategies on the enhancement of system resilience together with their costs. Different system configurations with green roofs, permeable pavement and storage tanks are compared by scenario analysis with full consideration of future uncertainties induced by urbanization and climate change. The research contributes to the development of sustainability assessment of urban drainage system with consideration of the resilience of green and grey infrastructure under future change. Finding the response measures with high adaptation across a variety of future scenarios is crucial to establish sustainable urban drainage system in a long term.


Journal of Environmental Sciences-china | 2011

Evaluation of the infectivity, gene and antigenicity persistence of rotaviruses by free chlorine disinfection

Dan Li; April Z. Gu; Siyu Zeng; Wan Yang; Miao He; Hanchang Shi

The effects of free chlorine disinfection of tap water and wastewater effluents on the infectivity, gene integrity and surface antigens of rotaviruses were evaluated by a bench-scale chlorine disinfection experiments. Plaque assays, integrated cell culture-quantitative RT-PCR (ICC-RT-qPCR), RT-qPCR, and enzyme-linked immunosorbent assays (ELISA), respectively, were used to assess the influence of the disinfectant on virus infectivity as well as genetic and antigenic integrity of simian rotavirus SA11 as a surrogate for human rotaviruses. The ICC-RT-qPCR was able to detect rotaviruses survival from chlorine disinfection at chlorine dose up to 20 mg/L (60 min contact), which suggested a required chlorine dose of 5 folds (from 1 to 5 mg/L) higher than that indicated by the plaque assay to achieve 1.8 log10 reductions in tap water with 60 min exposing. The VP7 gene was more resistant than the infectivity and existed at chlorine dose up to 20 mg/L (60 min contact), while the antigencity was undetectable with chlorine dose more than 5 mg/L (60 min contact). The water quality also impacted the inactivation efficiencies, and rotaviruses have a relatively higher resistant in secondary effluents than in the tap water under the same chlorine disinfection treatments. This study indicated that rotaviruses have a higher infectivity, gene and antigencity resistance to chlorine than that previously indicated by plaque assay only, which seemed to underestimate the resistance of rotaviruses to chlorine and the risk of rotaviruses in environments. Present results also suggested that re-evaluation of resistance of other waterborne viruses after disinfections by more sensitive infectivity detection method (such as ICC-RT-qPCR) may be necessary, to determine the adequate disinfectant doses required for the inactivation of waterborne viruses.

Collaboration


Dive into the Siyu Zeng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Li

Tsinghua University

View shared research outputs
Top Co-Authors

Avatar

Fu Sun

Tsinghua University

View shared research outputs
Top Co-Authors

Avatar

April Z. Gu

Northeastern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge