Sjaak van Heusden
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sjaak van Heusden.
Theoretical and Applied Genetics | 2006
John McCallum; Andrew C. Clarke; Meeghan Pither-Joyce; Martin L. Shaw; R. C. Butler; Don W. Brash; John Scheffer; Ian M. Sims; Sjaak van Heusden; Masayoshi Shigyo; Michael J. Havey
The non-structural dry matter content of onion bulbs consists principally of fructose, glucose, sucrose and fructans. The objective of this study was to understand the genetic basis for the wide variation observed in the relative amounts of these carbohydrates. Bulb carbohydrate composition was evaluated in progeny from crosses between high dry matter storage onion varieties and sweet, low dry matter varieties. When samples were analysed on a dry weight basis, reducing sugar and fructan content exhibited high negative correlations and bimodal segregation suggestive of the action of a major gene. A polymorphic SSR marker, ACM235, was identified which exhibited strong disequilibrium with bulb fructan content in F2:3 families from the ‘W202A’ × ‘Texas Grano 438’ mapping population evaluated in two environments. This marker was mapped to chromosome 8 in the interspecific population ‘Allium cepa × A. roylei’. Mapping in the ‘Colossal Grano PVP’ × ‘Early Longkeeper P12’ F2 population showed that a dominant major gene conditioning high-fructan content lay in the same genomic region. QTL analysis of total bulb fructan content in the intraspecific mapping population ‘BYG15-23’ × ‘AC43’ using a complete molecular marker map revealed only one significant QTL in the same chromosomal region. This locus, provisionally named Frc, may account for the major phenotypic differences in bulb carbohydrate content between storage and sweet onion varieties.
Plant Disease | 2015
Yusuf Sen; Jan M. van der Wolf; Richard G. F. Visser; Sjaak van Heusden
Clavibacter michiganensis subsp. michiganensis is the causal agent of bacterial canker of tomato. The disease was first described in 1910 in Michigan, USA. C. michiganensis subsp. michiganensis (from now on called clavibacter) was initially thought to be a phloem parasite, but was later found to be a xylem-invading bacterium. The host range comprises mainly solanaceous crops such as tomato, pepper, and eggplant. Strains show great variability in virulence and are usually described as being hypervirulent, hypovirulent, or nonvirulent. Clavibacter lacks a type III secretion system, and only a few virulence factors have been experimentally determined from the many putative virulence factors. As the molecular mode of infection by clavibacter is unknown, researchers have avoided intensive work on this organism. Genetic plant mechanisms conferring resistance to clavibacter are apparently complex, and breeders have yet to develop disease-resistant cultivars.
BMC Genomics | 2012
John McCallum; Samantha Baldwin; Masayoshi Shigyo; Yanbo Deng; Sjaak van Heusden; Meeghan Pither-Joyce; Fernand Kenel
BackgroundVegetables of the genus Allium are widely consumed but remain poorly understood genetically. Genetic mapping has been conducted in intraspecific crosses of onion (Allium cepa L.), A. fistulosum and interspecific crosses between A. roylei and these two species, but it has not been possible to access genetic maps and underlying data from these studies easily.DescriptionAn online comparative genomics database, AlliumMap, has been developed based on the GMOD CMap tool at http://alliumgenetics.org. It has been populated with curated data linking genetic maps with underlying markers and sequence data from multiple studies. It includes data from multiple onion mapping populations as well as the most closely related species A. roylei and A. fistulosum. Further onion EST-derived markers were evaluated in the A. cepa x A. roylei interspecific population, enabling merging of the AFLP-based maps. In addition, data concerning markers assigned in multiple studies to the Allium physical map using A. cepa-A. fistulosum alien monosomic addition lines have been compiled. The compiled data reveal extensive synteny between onion and A. fistulosum.ConclusionsThe database provides the first online resource providing genetic map and marker data from multiple Allium species and populations. The additional markers placed on the interspecific Allium map confirm the value of A. roylei as a valuable bridge between the genetics of onion and A. fistulosum and as a means to conduct efficient mapping of expressed sequence markers in Allium. The data presented suggest that comparative approaches will be valuable for genetic and genomic studies of onion and A. fistulosum. This online resource will provide a valuable means to integrate genetic and sequence-based explorations of Allium genomes.
Euphytica | 2015
Christos Kissoudis; Rawnaq Chowdhury; Sjaak van Heusden; Clemens C. M. van de Wiel; Richard Finkers; Richard G. F. Visser; Yuling Bai; Gerard van der Linden
Abiotic and biotic stress factors are the major constrains for the realization of crop yield potential. As climate change progresses, the spread and intensity of abiotic as well as biotic stressors is expected to increase, with increased probability of crops being exposed to both types of stress. Shielding crops from combinatorial stress requires a better understanding of the plant’s response and its genetic architecture. In this study, we evaluated resistance to salt stress, powdery mildew and to both stresses combined in tomato, using the Solanum habrochaites LYC4 introgression line (IL) population. The IL population segregated for both salt stress tolerance and powdery mildew resistance. Using SNP array marker data, QTLs were identified for salt tolerance as well as Na+ and Cl− accumulation. Salt stress increased the susceptibility of the population to powdery mildew in an additive manner. Phenotypic variation for disease resistance was reduced under combined stress as indicated by the coefficient of variation. No correlation was found between disease resistance and Na+ and Cl− accumulation under combined stress Most genetic loci were specific for either salt stress tolerance or powdery mildew resistance. These findings increase our understanding of the genetic regulation of responses to abiotic and biotic stress combinations and can provide leads to more efficiently breeding tomatoes and other crops with a high level of disease resistance while maintaining their performance in combination with abiotic stress.
BMC Genetics | 2014
Alejandro F Lucatti; Fien Meijer-Dekens; Roland Mumm; Richard G. F. Visser; Ben Vosman; Sjaak van Heusden
BackgroundHost plant resistance has been proposed as one of the most promising approaches in whitefly management. Already in 1995 two quantitative trait loci (Tv-1 and Tv-2) originating from S. habrochaites CGN1.1561 were identified that reduced the oviposition rate of the greenhouse whitefly (Trialeurodes vaporariorum). After this first study, several others identified QTLs affecting whitefly biology as well. Generally, the QTLs affecting oviposition were highly correlated with a reduction in whitefly survival and the presence of high densities of glandular trichomes type IV. The aim of our study was to further characterize Tv-1 and Tv-2, and to determine their role in resistance against Bemisia tabaci.ResultsWe selected F2 plants homozygous for the Tv-1 and Tv-2 QTL regions and did three successive backcrosses without phenotypic selection. Twenty-three F2BC3 plants were phenotyped for whitefly resistance and differences were found in oviposition rate of B. tabaci. The F2BC3 plants with the lowest oviposition rate had an introgression on Chromosome 5 in common. Further F2BC4, F2BC4S1 and F2BC4S2 families were developed, genotyped and phenotyped for adult survival, oviposition rate and trichome type and density. It was possible to confirm that an introgression on top of Chr. 5 (OR-5), between the markers rs-2009 and rs-7551, was responsible for reducing whitefly oviposition rate.ConclusionWe found a region of 3.06 Mbp at the top of Chr. 5 (OR-5) associated with a reduction in the oviposition rate of B. tabaci. This reduction was independent of the presence of the QTLs Tv-1 and Tv-2 as well as of the presence of trichomes type IV. The OR-5 locus will provide new opportunities for resistance breeding against whiteflies, which is especially relevant in greenhouse cultivation.
Frontiers in Plant Science | 2016
Ana-Rosa Ballester; Yury Tikunov; Jos Molthoff; Silvana Grandillo; Marcela Víquez-Zamora; Ric C. H. de Vos; Ruud A. de Maagd; Sjaak van Heusden; Arnaud G. Bovy
Semi-polar metabolites such as flavonoids, phenolic acids, and alkaloids are very important health-related compounds in tomato. As a first step to identify genes responsible for the synthesis of semi-polar metabolites, quantitative trait loci (QTLs) that influence the semi-polar metabolite content in red-ripe tomato fruit were identified, by characterizing fruits of a population of introgression lines (ILs) derived from a cross between the cultivated tomato Solanum lycopersicum and the wild species Solanum chmielewskii. By analyzing fruits of plants grown at two different locations, we were able to identify robust metabolite QTLs for changes in phenylpropanoid glycoconjugation on chromosome 9, for accumulation of flavonol glycosides on chromosome 5, and for alkaloids on chromosome 7. To further characterize the QTLs we used a combination of genome sequencing, transcriptomics and targeted metabolomics to identify candidate key genes underlying the observed metabolic variation.
Crop & Pasture Science | 2015
César E. Falconí; Richard G. F. Visser; Sjaak van Heusden
Abstract. Anthracnose, caused by Colletotrichum acutatum, is the most destructive fungal disease of Andean lupin (Lupinus mutabilis Sweet) in Ecuador and of other lupin species around the world. Symptoms of necrotic spots occur throughout the main stem, and infection progresses to cause bending of the main stem and lateral branches, resulting in yield loss. Although there is no known anthracnose resistance, this study aims to assess tolerance of Andean lupin and investigate lupin–C. acutatum interactions. Two Andean lupin genotypes, I-450 Andino and I-451 Guaranguito, were inoculated on the meristematic section of the main stem, either by spraying or by pipetting C. acutatum spores on to an artificial wound. Although the two methods gave similar results, spraying is the preferred method because it mimics natural pathogen infection. Plant-pathogen interactions were assessed at five different phenological stages (leaf stages 2–3, 4–5, 6–7, 8–9, and 10–11) with three C. acutatum isolates by using a 0–5 scale to assess disease symptoms. In both genotypes, anthracnose symptoms were greater at early seedling stage (2–3-leaf stage), decreasing significantly in early vegetative phase (6–7-leaf stage) and increasing again when the flower stage began (10–11-leaf stage). However, the tolerance of these two Andean lupin genotypes to anthracnose was not equally expressed at all developmental stages. We recommend, in a breeding program, that screening for anthracnose first occurs at the 6–7-leaf stage (6 weeks old) and again when flowering starts at the 10–11-leaf stage (10 weeks old) so that the overall tolerance can be determined. This method could be used in lupin breeding programs for improving resistance to anthracnose.
Euphytica | 2008
Ralph van Berloo; Sjaak van Heusden; Arnaud G. Bovy; Fien Meijer-Dekens; Pim Lindhout; Fred A. van Eeuwijk
The creation of a public–private research partnership between plant breeding industry and academia can be beneficial for all parties involved. Academic partners benefit from the material contributions by industry and a practically relevant research focus, while industry benefits from increased insights and methodology tailored to a relevant set of data. However, plant breeding industry is highly competitive and there are obvious limits to the data and material partners are willing and able to share. This will usually include current and historic released cultivated materials, but will very often not include the elite germplasm used in-house to create new cultivars. Especially for crops where hybrid cultivars dominate the market, parental lines of hybrid cultivars are considered core assets that are never provided to outside parties. However, this limitation often does not apply to DNA or genetic fingerprints of these parental lines. We developed a procedure to take advantage of elite breeding materials for the creation of new promising research populations, through indirect selection of parents. The procedure starts with the identification of a number of traits for further study based on the presence of marker-trait associations and a priori knowledge within the participating companies about promising traits for quality improvement. Next, regression-based multi-QTL models are fitted to hybrid cultivar data to identify QTLs. Fingerprint data of parental lines of a limited number of specific hybrids are then used to predict parental phenotypes using the multi-QTL model fitted on hybrid data. The specific hybrids spanned the whole of the sensory space adequately. Finally, a choice of parental lines is made based on the QTL model predictions and new promising line combinations are identified. Breeding industry is then asked to create and provide progeny of these line combinations for further research. This approach will be illustrated with a case study in tomato.
Journal of Integrative Plant Biology | 2016
Floor van den Oever-van den Elsen; Alejandro F. Lucatti; Sjaak van Heusden; Colette Broekgaarden; Roland Mumm; Marcel Dicke; Ben Vosman
The whitefly Bemisia tabaci is a serious threat in tomato cultivation worldwide as all varieties grown today are highly susceptible to this devastating herbivorous insect. Many accessions of the tomato wild relative Solanum pennellii show a high resistance towards B. tabaci. A mapping approach was used to elucidate the genetic background of whitefly-resistance related traits and associated biochemical traits in this species. Minor quantitative trait loci (QTLs) for whitefly adult survival (AS) and oviposition rate (OR) were identified and some were confirmed in an F2 BC1 population, where they showed increased percentages of explained variance (more than 30%). Bulked segregant analyses on pools of whitefly-resistant and -susceptible F2 plants enabled the identification of metabolites that correlate either with resistance or susceptibility. Genetic mapping of these metabolites showed that a large number of them co-localize with whitefly-resistance QTLs. Some of these whitefly-resistance QTLs are hotspots for metabolite QTLs. Although a large number of metabolite QTLs correlated to whitefly resistance or susceptibility, most of them are yet unknown compounds and further studies are needed to identify the metabolic pathways and genes involved. The results indicate a direct genetic correlation between biochemical-based resistance characteristics and reduced whitefly incidence in S. pennellii.
Physiologia Plantarum | 2018
Aina E. Prinzenberg; Marcela Víquez-Zamora; Jeremy Harbinson; Pim Lindhout; Sjaak van Heusden
Physiology and genetics are tightly interrelated. Understanding the genetic basis of a physiological trait such as the quantum yield of the photosystem II, or photosynthetic responses to environmental changes will benefit the understanding of these processes. By means of chlorophyll fluorescence (CF) imaging, the quantum yield of photosystem II can be determined rapidly, precisely and non-invasively. In this article, the genetic control and variation in the steady-state quantum yield of PSII (ΦPSII ) is analyzed for diploid potato plants. Current progress in potato research and breeding is slow due to high levels of heterozygosity and complexity of tetraploid genetics. Diploid potatoes offer the possibility of overcoming this problem and advance research for one of the globally most important staple foods. With the help of a diploid genetic mapping population two genetic loci that were strongly associated with differences in ΦPSII were identified. This is a proof of principle that genetic analysis for ΦPSII can be done on potato. The effects of three different stress conditions that are important in potato cultivation were also tested: salt stress, low temperature and deficiency in the macronutrient phosphate. For the last two stresses, significant decreases in photosynthetic activity could be shown, revealing potential for stress detection with CF based tools. In general, our findings show the potential of high-throughput phenotyping for physiological research and breeding in potato.