Sjoerd C. Veenstra
Energy Research Centre of the Netherlands
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sjoerd C. Veenstra.
Journal of the American Chemical Society | 2008
Dirk Veldman; Özlem İpek; Stefan C. J. Meskers; Jörgen Sweelssen; Marc M. Koetse; Sjoerd C. Veenstra; Jan Kroon; Ss Svetlana van Bavel; Joachim Loos; René A. J. Janssen
The electro-optical properties of thin films of electron donor-acceptor blends of a fluorene copolymer (PF10TBT) and a fullerene derivative (PCBM) were studied. Transmission electron microscopy shows that in these films nanocrystalline PCBM clusters are formed at high PCBM content. For all concentrations, a charge transfer (CT) transition is observed with absorption spectroscopy, photoluminescence, and electroluminescence. The CT emission is used as a probe to investigate the dissociation of CT excited states at the donor-acceptor interface in photovoltaic devices, as a function of an applied external electric field and PCBM concentration. We find that the maximum of the CT emission shifts to lower energy and decreases in intensity with higher PCBM content. We explain the red shift of the emission and the lowering of the open-circuit voltage (V(OC)) of photovoltaic devices prepared from these blends with the higher relative permittivity of PCBM (epsilon(r) = 4.0) compared to that of the polymer (epsilon(r) = 3.4), stabilizing the energy (E(CT)) of CT states and of the free charge carriers in blends with higher PCBM concentration. We show that the CT state has a short decay time (tau = ca. 4 ns) that is reduced by the application of an external electric field or with increasing PCBM content. The field-induced quenching can be explained quantitatively with the Onsager-Braun model for the dissociation of the CT states when including a high electron mobility in nanocrystalline PCBM clusters. Furthermore, photoinduced absorption spectroscopy shows that increasing the PCBM concentration reduces the yield of neutral triplet excitons forming via electron-hole recombination, and increases the lifetime of radical cations. The presence of nanocrystalline domains with high local carrier mobility of at least one of the two components in an organic heterojunction may explain efficient dissociation of CT states into free charge carriers.
Applied Physics Letters | 2007
Lenneke H. Slooff; Sjoerd C. Veenstra; Jm Kroon; D. J. D. Moet; Jörgen Sweelssen; Marc M. Koetse
A power conversion efficiency of 4.2% (AM1.5, 1000W∕m2) is measured for an organic solar cell based on an active layer of an alternating copolymer, containing a fluorene and a benzothiadiazole unit with two neighboring thiophene rings, and a fullerene derivative. Using optical modeling, the absorption profile in the active layer of the solar cell is calculated and used to calculate the maximum short circuit current. The calculated currents are compared with measured currents from current-voltage measurements for various film thicknesses. From this the internal quantum efficiency is estimated to be 75% at the maximum for the best device.
Applied Physics Letters | 2006
Marc M. Koetse; Jörgen Sweelssen; Kornel T. Hoekerd; Herman F. M. Schoo; Sjoerd C. Veenstra; Jan Kroon; Xiaoniu Yang; Joachim Loos
An organic bulk heterojunction photovoltaic device based on a blend of two conjugated polymers, a polyphenylenevinylene as the electron donor and a red emitting polyfluorene as the acceptor, is presented with a maximum external quantum efficiency of 52% at 530nm and a power conversion efficiency, measured under AM1.5G, 100mW∕cm2 conditions, of 1.5% on an active area of 0.36cm2.
Macromolecular Rapid Communications | 2010
Ss Svetlana van Bavel; Sjoerd C. Veenstra; Joachim Loos
Nanostructured polymer-based solar cells (PSCs) have emerged as a promising low-cost alternative to conventional inorganic photovoltaic devices and are now a subject of intensive research both in academia and industry. For PSCs to become practical efficient devices, several issues should still be addressed, including further understanding of their operation and stability, which in turn are largely determined by the morphological organisation in the photoactive layer. The latter is typically a few hundred nanometres thick film and is a blend composed of two materials: the bulk heterojunction consisting of the electron donor and the electron acceptor. The main requirements for the morphology of efficient photoactive layers are nanoscale phase segregation for a high donor/acceptor interface area and hence efficient exciton dissociation, short and continuous percolation pathways of both components leading through the layer thickness to the corresponding electrodes for efficient charge transport and collection, and high crystallinity of both donor and acceptor materials for high charge mobility. In this paper, we review recent progress of our understanding on how the efficiency of a bulk heterojunction PSC largely depends on the local nanoscale volume organisation of the photoactive layer.
Energy and Environmental Science | 2017
Dibyashree Koushik; Wiljan Verhees; Yinghuan Kuang; Sjoerd C. Veenstra; Dong Zhang; Marcel A. Verheijen; M. Creatore; R.E.I. Schropp
Perovskite materials are drawing tremendous interest for photovoltaic solar cell applications, but are hampered by intrinsic material and device instability issues. Such issues can arise from environmental influences as well as from the chemical incompatibility of the perovskite layer with charge transport layers and electrodes used in the device stack. Several attempts have been made to address the instability issue, mostly concentrating on the substitution of the organic cations in the perovskite lattice, and on alternatives for the organic charge extraction layers, without laying much emphasis on stabilising the existing, conventional high efficiency methylammonium lead iodide/spiro-OMeTAD based devices. To address the latter issue, we utilized atomic layer deposition (ALD) as a straightforward and soft deposition process to conformally deposit Al2O3 on top of the perovskite absorber. An ultra-thin ALD Al2O3 film effectively protects the perovskite layer while it is sufficiently thin enough to provide a tunnel contact. The fabricated perovskite solar cells (PSCs) exhibit superior device performance with a stabilised power conversion efficiency (PCE) of 18%, a significant reduction in hysteresis loss, and enhanced long-term stability (beyond 60 days) as a function of the unencapsulated storage time in ambient air, under humidity conditions ranging from 40 to 70% at room temperature. PCE measurements after 70 days of humidity exposure show that the devices incorporating 10 cycles of ALD Al2O3 could significantly retard the humidity-induced degradation thereby retaining about 60–70% of its initial PCE, while that of the reference devices drops to a remaining 12% of their initial PCE. This work successfully addresses and tackles the problem of the hybrid organic–inorganic IV-halide perovskite solar cell’s instability in a humid environment, and the key findings pave the way to the upscaling of these devices.
Journal of Materials Chemistry | 2009
Ss Svetlana van Bavel; E Erwan Sourty; Sjoerd C. Veenstra; Joachim Loos
The performance of polymer solar cells (PSCs) strongly depends on the three-dimensional morphological organization of the compounds within the bulk heterojunction active layer. Donor and acceptor materials should form co-continuous networks with nanoscale phase separation to sustain effective dissociation of excitons into free electrons and holes at the donor/acceptor interface and to guarantee fast charge carrier transport from any place in the photoactive layer to the corresponding electrodes. Here, we describe applications of the technique of electron tomography to directly visualize with nanometre resolution and study in detail the 3D organization in the photoactive layers of PSCs, with the aim of identifying the critical morphology parameters contributing to high efficiency of bulk heterojunction systems.
Physical Chemistry Chemical Physics | 2014
L. H. Slooff; Sjoerd C. Veenstra; J. M. Kroon; Wiljan Verhees; L. J. A. Koster; Yulia Galagan
Solar cells are generally optimised for operation under AM1.5 100 mW cm(-2) conditions. This is also typically done for polymer solar cells. However, one of the entry markets for this emerging technology is portable electronics. For this market, the spectral shape and intensity of typical illumination conditions deviate considerably from the standard test conditions (AM1.5, 100 mW cm(-2), at 25 °C). The performance of polymer solar cells is strongly dependent on the intensity and spectral shape of the light source. For this reason the cells should be optimised for the specific application. Here a theoretical model is presented that describes the light intensity dependence of P3HT:[C60]PCBM solar cells. It is based on the Shockley diode equation, combined with a metal-insulator-metal model. In this way the observed light intensity dependence of P3HT:[C60]PCBM solar cells can be described using a 1-diode model, allowing fast optimization of polymer solar cells and module design.
Journal of Materials Chemistry | 2015
Yulia Galagan; Tamara M. Eggenhuisen; Mj Mart Coenen; Afkv Biezemans; Wjh Verhees; Sjoerd C. Veenstra; Wilhelm A. Groen; Ram Andriessen; Raj René Janssen
In this paper we discuss a problem-solving methodology and present guidance for troubleshooting defects in ITO-free all-solution processed organic solar cells with an inverted cell architecture. A systematic approach for identifying the main causes of failures in devices is presented. Comprehensive analysis of the identified failure mechanisms allowed us to propose practical solutions for further avoiding and eliminating failures in all-solution processed organic solar cells. Implementation of the proposed solutions has significantly improved the yield and quality of all-solution processed organic solar cells.
Small | 2018
Mehrdad Najafi; F. Di Giacomo; Dong Zhang; Santhosh Shanmugam; Alessandro Senes; Wiljan Verhees; A. Hadipour; Yulia Galagan; Tom Aernouts; Sjoerd C. Veenstra; Ronn Andriessen
In this study, the fabrication of highly efficient and durable flexible inverted perovskite solar cells (PSCs) is reported. Presynthesized, solution-derived NiOx and ZnO nanoparticles films are employed at room temperature as a hole transport layer (HTL) and electron transport layer (ETL), respectively. The triple cation perovskite films are produced in a single step and for the sake of comparison, ultrasmooth and pinhole-free absorbing layers are also fabricated using MAPbI3 perovskite. The triple cation perovskite cells exhibit champion power conversion efficiencies (PCEs) of 18.6% with high stabilized power conversion efficiency of 17.7% on rigid glass/indium tin oxide (ITO) substrates (comparing with 16.6% PCE with 16.1% stabilized output efficiency for the flexible polyethylene naphthalate (PEN)/thin film barrier/ITO substrates). More interestingly, the durability of flexible PSC under simulation of operative condition is proved. Over 85% of the maximum stabilized output efficiency is retained after 1000 h aging employing a thin MAPbI3 perovskite (over 90% after 500 h with a thick triple cation perovskite). This result is comparable to a similar state of the art rigid PSC and represents a breakthrough in the stability of flexible PSC using ETLs and HTLs compatible with roll to roll production speed, thanks to their room temperature processing.
MRS Proceedings | 2006
Date J. D. Moet; Lenneke H. Slooff; Jan Kroon; Svetlana S. Chevtchenko; Joachim Loos; Marc M. Koetse; Jörgen Sweelssen; Sjoerd C. Veenstra
The costs of large area, organic photovoltaic devices are stronly related to their module efficiency. Even for niche markets, such as consumer electronics, efficiency is imperative since the available area is limited. Therefore, if polymer photovoltaics is to become a mature technology, it is key to increase the power conversion efficiency of the devices. In our contribution an analysis is given of the energy loss factors in P3HT:[C6O]PCBM cells. The main loss occurs as a voltage loss at the donor-accpetor interface. Since this loss factor is linked to the HOMO-LUMO levels of the system, it is impossilble to reduce this loss using the same material combination. We present polymer: [C6O]PCBM cells with similar optical properties but with a reduced voltage loss at the interface, leading to enhanced open circuit Voltage of 1.0 V (compared to 0.62 V for P3HT:[C6O]PCBM devices). The polymer is an alternating copolymer with fluorence and benzothiadiazole units (PFTBT). Well-characterised devices yield already an AM 1.5 efficiency of 4%, thus competing with state-of-the-art P3HT:PCBM devices.