Sjoerd M. Verduyn Lunel
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sjoerd M. Verduyn Lunel.
Archive | 1995
Odo Diekmann; Sjoerd M. Verduyn Lunel; Stephan A. van Gils; Hanns-Otto Walther
In this chapter we study the nonlinear equation n n
Archive | 1995
Odo Diekmann; Sjoerd M. Verduyn Lunel; Stephan A. van Gils; Hanns-Otto Walther
Archive | 1995
Odo Diekmann; Sjoerd M. Verduyn Lunel; Stephan A. van Gils; Hanns-Otto Walther
dot x(t) = f(x(t - alpha ))
Archive | 1995
Odo Diekmann; Sjoerd M. Verduyn Lunel; Stephan A. van Gils; Hanns-Otto Walther
Archive | 1995
Odo Diekmann; Sjoerd M. Verduyn Lunel; Stephan A. van Gils; Hanns-Otto Walther
n n(1.1) n nwhere f: ℝ→ℝ is a continuous function. The positive parameter α is called the time lag. Equation (1.1) is the prototype for nonlinear delayed feedback. We shall see that the lag α can cause much more complex behaviour of solutions than in the ODE case α=0 where only monotone solutions converging to equilibria or infinity are possible. In particular, we shall prove the existence of periodic solutions (Section 5).
Archive | 1995
Odo Diekmann; Sjoerd M. Verduyn Lunel; Stephan A. van Gils; Hanns-Otto Walther
When a linear delay system is subject to external “forcing”, it can be described by the inhomogeneous equation n n
Archive | 1995
Odo Diekmann; Sjoerd M. Verduyn Lunel; Stephan A. van Gils; Hanns-Otto Walther
Archive | 1995
Odo Diekmann; Sjoerd M. Verduyn Lunel; Stephan A. van Gils; Hanns-Otto Walther
dot x(t) = {langlezeta,{x_t}rangle_n} + f(t)
Archive | 1995
Odo Diekmann; Sjoerd M. Verduyn Lunel; Stephan A. van Gils; Hanns-Otto Walther
Archive | 1995
Odo Diekmann; Sjoerd M. Verduyn Lunel; Stephan A. van Gils; Hanns-Otto Walther
n n(1.1) n nwith f: ℝ → ℂ n a given (continuous) function describing the influence of the outside world. As in the foregoing chapters we shall rewrite (1.1) in the abstract form n n