Slavé Petrovski
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Slavé Petrovski.
Nature | 2013
Andrew S. Allen; Samuel F. Berkovic; Patrick Cossette; Norman Delanty; Dennis J. Dlugos; Evan E. Eichler; Michael P. Epstein; Tracy A. Glauser; David B. Goldstein; Yujun Han; Erin L. Heinzen; Yuki Hitomi; Katherine B. Howell; Michael R. Johnson; Ruben Kuzniecky; Daniel H. Lowenstein; Yi Fan Lu; Maura Madou; Anthony G Marson; Mefford Hc; Sahar Esmaeeli Nieh; Terence J. O'Brien; Ruth Ottman; Slavé Petrovski; Annapurna Poduri; Elizabeth K. Ruzzo; Ingrid E. Scheffer; Elliott H. Sherr; Christopher J. Yuskaitis; Bassel Abou-Khalil
Epileptic encephalopathies are a devastating group of severe childhood epilepsy disorders for which the cause is often unknown. Here we report a screen for de novo mutations in patients with two classical epileptic encephalopathies: infantile spasms (n = 149) and Lennox–Gastaut syndrome (n = 115). We sequenced the exomes of 264 probands, and their parents, and confirmed 329 de novo mutations. A likelihood analysis showed a significant excess of de novo mutations in the ∼4,000 genes that are the most intolerant to functional genetic variation in the human population (P = 2.9 × 10−3). Among these are GABRB3, with de novo mutations in four patients, and ALG13, with the same de novo mutation in two patients; both genes show clear statistical evidence of association with epileptic encephalopathy. Given the relevant site-specific mutation rates, the probabilities of these outcomes occurring by chance are P = 4.1 × 10−10 and P = 7.8 × 10−12, respectively. Other genes with de novo mutations in this cohort include CACNA1A, CHD2, FLNA, GABRA1, GRIN1, GRIN2B, HNRNPU, IQSEC2, MTOR and NEDD4L. Finally, we show that the de novo mutations observed are enriched in specific gene sets including genes regulated by the fragile X protein (P < 10−8), as has been reported previously for autism spectrum disorders.
PLOS Genetics | 2013
Slavé Petrovski; Quanli Wang; Erin L. Heinzen; Andrew S. Allen; David B. Goldstein
A central challenge in interpreting personal genomes is determining which mutations most likely influence disease. Although progress has been made in scoring the functional impact of individual mutations, the characteristics of the genes in which those mutations are found remain largely unexplored. For example, genes known to carry few common functional variants in healthy individuals may be judged more likely to cause certain kinds of disease than genes known to carry many such variants. Until now, however, it has not been possible to develop a quantitative assessment of how well genes tolerate functional genetic variation on a genome-wide scale. Here we describe an effort that uses sequence data from 6503 whole exome sequences made available by the NHLBI Exome Sequencing Project (ESP). Specifically, we develop an intolerance scoring system that assesses whether genes have relatively more or less functional genetic variation than expected based on the apparently neutral variation found in the gene. To illustrate the utility of this intolerance score, we show that genes responsible for Mendelian diseases are significantly more intolerant to functional genetic variation than genes that do not cause any known disease, but with striking variation in intolerance among genes causing different classes of genetic disease. We conclude by showing that use of an intolerance ranking system can aid in interpreting personal genomes and identifying pathogenic mutations.
Science | 2015
Elizabeth T. Cirulli; Brittany N. Lasseigne; Slavé Petrovski; Peter C. Sapp; Patrick A. Dion; Claire S. Leblond; Julien Couthouis; Yi Fan Lu; Quanli Wang; Brian Krueger; Zhong Ren; Jonathan Keebler; Yujun Han; Shawn Levy; Braden E. Boone; Jack R. Wimbish; Lindsay L. Waite; Angela L. Jones; John P. Carulli; Aaron G. Day-Williams; John F. Staropoli; Winnie Xin; Alessandra Chesi; Alya R. Raphael; Diane McKenna-Yasek; Janet Cady; J.M.B.Vianney de Jong; Kevin Kenna; Bradley Smith; Simon Topp
New players in Lou Gehrigs disease Amyotrophic lateral sclerosis (ALS), often referred to as “Lou Gehrigs disease,” is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Cirulli et al. sequenced the expressed genes of nearly 3000 ALS patients and compared them with those of more than 6000 controls (see the Perspective by Singleton and Traynor). They identified several proteins that were linked to disease in patients. One such protein, TBK1, is implicated in innate immunity and autophagy and may represent a therapeutic target. Science, this issue p. 1436; see also p. 1422 Analysis of the expressed genes of nearly 2900 patients with amyotrophic lateral sclerosis and about 6400 controls reveals a disease predisposition–associated gene. [Also see Perspective by Singleton and Traynor] Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.
Nature Reviews Genetics | 2013
David B. Goldstein; Andrew S. Allen; Jonathan Keebler; Elliott H. Margulies; Steven Petrou; Slavé Petrovski; Shamil R. Sunyaev
Next-generation sequencing is becoming the primary discovery tool in human genetics. There have been many clear successes in identifying genes that are responsible for Mendelian diseases, and sequencing approaches are now poised to identify the mutations that cause undiagnosed childhood genetic diseases and those that predispose individuals to more common complex diseases. There are, however, growing concerns that the complexity and magnitude of complete sequence data could lead to an explosion of weakly justified claims of association between genetic variants and disease. Here, we provide an overview of the basic workflow in next-generation sequencing studies and emphasize, where possible, measures and considerations that facilitate accurate inferences from human sequencing studies.
Genetics in Medicine | 2015
Xiaolin Zhu; Slavé Petrovski; Pingxing Xie; Elizabeth K. Ruzzo; Yi-Fan Lu; K. Melodi McSweeney; Bruria Ben-Zeev; Andreea Nissenkorn; Yair Anikster; Danit Oz-Levi; Ryan S. Dhindsa; Yuki Hitomi; Kelly Schoch; Rebecca C. Spillmann; Gali Heimer; Dina Marek-Yagel; Michal Tzadok; Yujun Han; Gordon Worley; Jennifer L. Goldstein; Yong-hui Jiang; Doron Lancet; Elon Pras; Vandana Shashi; Duncan McHale; Anna C. Need; David B. Goldstein
Purpose:Despite the recognized clinical value of exome-based diagnostics, methods for comprehensive genomic interpretation remain immature. Diagnoses are based on known or presumed pathogenic variants in genes already associated with a similar phenotype. Here, we extend this paradigm by evaluating novel bioinformatics approaches to aid identification of new gene–disease associations.Methods:We analyzed 119 trios to identify both diagnostic genotypes in known genes and candidate genotypes in novel genes. We considered qualifying genotypes based on their population frequency and in silico predicted effects we also characterized the patterns of genotypes enriched among this collection of patients.Results:We obtained a genetic diagnosis for 29 (24%) of our patients. We showed that patients carried an excess of damaging de novo mutations in intolerant genes, particularly those shown to be essential in mice (P = 3.4 × 10−8). This enrichment is only partially explained by mutations found in known disease-causing genes.Conclusion:This work indicates that the application of appropriate bioinformatics analyses to clinical sequence data can also help implicate novel disease genes and suggest expanded phenotypes for known disease genes. These analyses further suggest that some cases resolved by whole-exome sequencing will have direct therapeutic implications.Genet Med 17 10, 774–781.
Annals of Neurology | 2014
Carol J. Milligan; Melody Li; Elena V. Gazina; Sarah E. Heron; Umesh Nair; Chantel Trager; Christopher A. Reid; Anu Venkat; Donald P. Younkin; Dennis J. Dlugos; Slavé Petrovski; David B. Goldstein; Leanne M. Dibbens; Ingrid E. Scheffer; Samuel F. Berkovic; Steven Petrou
Mutations in KCNT1 have been implicated in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and epilepsy of infancy with migrating focal seizures (EIMFS). More recently, a whole exome sequencing study of epileptic encephalopathies identified an additional de novo mutation in 1 proband with EIMFS. We aim to investigate the electrophysiological and pharmacological characteristics of hKCNT1 mutations and examine developmental expression levels.
Neurology | 2010
Slavé Petrovski; Cassandra Szoeke; Nigel C. Jones; Michael R. Salzberg; Leslie J. Sheffield; Richard M. Huggins; Terence J. O'Brien
Objectives: To test the hypothesis that neuropsychiatric symptomatology is predictive of the success of seizure control in patients newly treated with antiepileptic drugs (AEDs), and that this predictive value adds to that provided by other clinical, imaging, and genomic factors in a multivariate model. Methods: One hundred seventy newly treated patients with epilepsy completed the A-B Neuropsychological Assessment Scale (ABNAS) before commencing AED therapy and were prospectively followed up for 12 months. Patients were classified as nonresponsive if they had at least 1 seizure not explained by medication noncompliance or other significant provoking factors. Results: Of the 138 patients in whom a drug response phenotype at 12 months was able to be determined, nonresponsive patients (n = 45) had a higher pretreatment ABNAS score than patients whose seizures were controlled (n = 93) (p = 0.007). A lesion on MRI was also associated with a higher risk of seizure recurrence (p = 0.003). On multivariate logistic regression, the ABNAS score, the MRI results, and a genomic classifier were all independently predictive of treatment outcome. For AED pharmacoresponse, this multivariate model had diagnostic values of 91% sensitivity, 64% specificity, 84% positive predictive, and 78% negative predictive values. The predictive value of the ABNAS score was validated in a second prospective cohort of 74 newly treated patients with epilepsy (p = 0.005). Conclusions: The ABNAS provides prognostic information regarding successful seizure control in patients newly treated with AEDs. Furthermore, these results demonstrate the multifactorial nature of the determinants of AED response, with neuropsychological, structural, and genomic factors all contributing to the complex response phenotype.
American Journal of Human Genetics | 2011
Qianqian Zhu; Dongliang Ge; Jessica M. Maia; Mingfu Zhu; Slavé Petrovski; Samuel P. Dickson; Erin L. Heinzen; David B. Goldstein
One of the longest running debates in evolutionary biology concerns the kind of genetic variation that is primarily responsible for phenotypic variation in species. Here, we address this question for humans specifically from the perspective of population allele frequency of variants across the complete genome, including both coding and noncoding regions. We establish simple criteria to assess the likelihood that variants are functional based on their genomic locations and then use whole-genome sequence data from 29 subjects of European origin to assess the relationship between the functional properties of variants and their population allele frequencies. We find that for all criteria used to assess the likelihood that a variant is functional, the rarer variants are significantly more likely to be functional than the more common variants. Strikingly, these patterns disappear when we focus on only those variants in which the major alleles are derived. These analyses indicate that the majority of the genetic variation in terms of phenotypic consequence may result from a mutation-selection balance, as opposed to balancing selection, and have direct relevance to the study of human disease.
Brain | 2013
Dalia Kasperavičiūtė; Claudia B. Catarino; Mar Matarin; Costin Leu; Jan Novy; Anna Tostevin; Bárbara Leal; Ellen V. S. Hessel; Kerstin Hallmann; Michael S. Hildebrand; Hans-Henrik M. Dahl; Mina Ryten; Daniah Trabzuni; Adaikalavan Ramasamy; Saud Alhusaini; Colin P. Doherty; Thomas Dorn; Jörg Hansen; Günter Krämer; Bernhard J. Steinhoff; Dominik Zumsteg; Susan Duncan; Reetta Kälviäinen; Kai Eriksson; Anne-Mari Kantanen; Massimo Pandolfo; Ursula Gruber-Sedlmayr; Kurt Schlachter; Eva M. Reinthaler; Elisabeth Stogmann
Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10−9, odds ratio (A) = 1.42, 95% confidence interval: 1.26–1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.
AIDS | 2011
Slavé Petrovski; Jacques Fellay; Nicole Carpenetti; Johnstone Kumwenda; Gift Kamanga; Deborah Kamwendo; Norman L. Letvin; Andrew J. McMichael; Barton F. Haynes; Myron S. Cohen; David B. Goldstein
Objective:To date, CCR5 variants remain the only human genetic factors to be confirmed to impact HIV-1 acquisition. However, protective CCR5 variants are largely absent in African populations, in which sporadic resistance to HIV-1 infection is still unexplained. We investigated whether common genetic variants associate with HIV-1 susceptibility in Africans. Methods:We performed a genome-wide association study (GWAS) in a population of 1532 individuals from Malawi, a country with high prevalence of HIV-1 infection. Using single-nucleotide polymorphisms (SNPs) present on the genome-wide chip, we also investigated previously reported associations with HIV-1 susceptibility or acquisition. Recruitment was coordinated by the Center for HIV/AIDS Vaccine Immunology at two sexually transmitted infection clinics. HIV status was determined by HIV rapid tests and nucleic acid testing. Results:After quality control, the population consisted of 848 high-risk seronegative and 531 HIV-1 seropositive individuals. Logistic regression testing in an additive genetic model was performed for SNPs that passed quality control. No single SNP yielded a significant P value after correction for multiple testing. The study was sufficiently powered to detect markers with genotype relative risk 2.0 or more and minor allele frequencies 12% or more. Conclusion:This is the first GWAS of host determinants of HIV-1 susceptibility, performed in an African population. The absence of any significant association can have many possible explanations: rarer genetic variants or common variants with weaker effect could be responsible for the resistance phenotype; alternatively, resistance to HIV-1 infection might be due to nongenetic parameters or to complex interactions between genes, immunity and environment.