Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sliman J. Bensmaia is active.

Publication


Featured researches published by Sliman J. Bensmaia.


Attention Perception & Psychophysics | 2000

Individual differences in perceptual space for tactile textures: Evidence from multidimensional scaling

Mark Hollins; Sliman J. Bensmaia; Kristie Karlof; Forrest W. Young

Ratio scaling was used to obtain from 5 subjects estimates of the subjective dissimilarity between the members of all possible pairs of 17 tactile surfaces. The stimuli were a diverse array of everyday surfaces, such as corduroy, sandpaper, and synthetic fur. The results were analyzed using the multidimensional scaling (MDS) program ALSCAL. There was substantial, but not complete, agreement across subjects in the spatial arrangement of perceived textures. Scree plots and multivariate analysis suggested that, for some subjects, a two-dimensional space was the optimal MDS solution, whereas for other subjects, a three-dimensional space was indicated. Subsequent to their dissimilarity scaling, subjects rated each stimulus on each of five adjective scales. Consistent with earlier research, two of these (rough/smooth andsoft/hard) were robustly related to the space for all subjects. A third scale,sticky/slippery, was more variably related to the dissimilarity data: regressed into three-dimensional MDS space, it was angled steeply into the third dimension only for subjects whose scree plots favored a nonplanar solution. We conclude that thesticky/slippery dimension is perceptually weighted less than therough/smooth andsoft/hard dimensions, materially contributing to the structure of perceptual space only in some individuals.


Nature Reviews Neuroscience | 2014

Restoring sensorimotor function through intracortical interfaces: progress and looming challenges

Sliman J. Bensmaia; Lee E. Miller

The loss of a limb or paralysis resulting from spinal cord injury has devastating consequences on quality of life. One approach to restoring lost sensory and motor abilities in amputees and patients with tetraplegia is to supply them with implants that provide a direct interface with the CNS. Such brain–machine interfaces might enable a patient to exert voluntary control over a prosthetic or robotic limb or over the electrically induced contractions of paralysed muscles. A parallel interface could convey sensory information about the consequences of these movements back to the patient. Recent developments in the algorithms that decode motor intention from neuronal activity and in approaches to convey sensory feedback by electrically stimulating neurons, using biomimetic and adaptation-based approaches, have shown the promise of invasive interfaces with sensorimotor cortices, although substantial challenges remain.


Attention Perception & Psychophysics | 2005

Pacinian representations of fine surface texture

Sliman J. Bensmaia; Mark Hollins

Subjects were presented with pairs of finely textured stimuli and were instructed to rate their dissimilarity, using free magnitude estimation. The subjects also rated the stimuli along each of four textural continua: roughness, hardness, stickiness, and warmth. In subsequent experimental sessions, we used a Hall effect transducer to measure the vibrations produced in the subjects’ fingertip skin as the stimuli were scanned across it. We wished to assess the extent to which the perceptual dissimilarity of the textures could be explained in terms of the perceptual dissimilarity of the vibrations they elicited in the skin. To that end, we invoked a model characterizing the Pacinian representation of a vibratory stimulus. From the model, we computed the difference in the vibratory representations of the two stimuli in each pair. We found that the bulk of the variance in perceived dissimilarity of the textures was accounted for by differences in the Pacinian representations of the vibrations they produced. Our results further suggested that the textural information conveyed by the Pacinian system concerns surface roughness and, possibly, stickiness.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Restoring the sense of touch with a prosthetic hand through a brain interface.

Gregg A. Tabot; John F. Dammann; J. Berg; Francesco Tenore; Jessica L Boback; R. Jacob Vogelstein; Sliman J. Bensmaia

Significance Our ability to manipulate objects relies fundamentally on sensory signals originating from the hand. To restore motor function with upper-limb neuroprostheses requires that somatosensory feedback be provided to the tetraplegic patient or amputee. Accordingly, we have developed approaches to convey sensory information critical for object manipulation—information about contact location, pressure, and timing—through intracortical microstimulation of somatosensory cortex. In experiments with nonhuman primates, we show that we can elicit percepts that are projected to a localized patch of skin, that track the pressure exerted on the skin, and that signal the timing of contact events. We anticipate that the proposed biomimetic feedback will constitute an important step in restoring touch to individuals who have lost it. Our ability to manipulate objects dexterously relies fundamentally on sensory signals originating from the hand. To restore motor function with upper-limb neuroprostheses requires that somatosensory feedback be provided to the tetraplegic patient or amputee. Given the complexity of state-of-the-art prosthetic limbs and, thus, the huge state space they can traverse, it is desirable to minimize the need for the patient to learn associations between events impinging on the limb and arbitrary sensations. Accordingly, we have developed approaches to intuitively convey sensory information that is critical for object manipulation—information about contact location, pressure, and timing—through intracortical microstimulation of primary somatosensory cortex. In experiments with nonhuman primates, we show that we can elicit percepts that are projected to a localized patch of skin and that track the pressure exerted on the skin. In a real-time application, we demonstrate that animals can perform a tactile discrimination task equally well whether mechanical stimuli are delivered to their native fingers or to a prosthetic one. Finally, we propose that the timing of contact events can be signaled through phasic intracortical microstimulation at the onset and offset of object contact that mimics the ubiquitous on and off responses observed in primary somatosensory cortex to complement slowly varying pressure-related feedback. We anticipate that the proposed biomimetic feedback will considerably increase the dexterity and embodiment of upper-limb neuroprostheses and will constitute an important step in restoring touch to individuals who have lost it.


Somatosensory and Motor Research | 2007

Texture perception through direct and indirect touch: An analysis of perceptual space for tactile textures in two modes of exploration

Takashi Yoshioka; Sliman J. Bensmaia; James C. Craig; Steven S. Hsiao

Considerable information about the texture of objects can be perceived remotely through a probe. It is not clear, however, how texture perception with a probe compares with texture perception with the bare finger. Here we investigate the perception of a variety of textured surfaces encountered daily (e.g., corduroy, paper, and rubber) using the two scanning modes—direct touch through the finger and indirect touch through a probe held in the hand—in two tasks. In the first task, subjects rated the overall pair-wise dissimilarity of the textures. In the second task, subjects rated each texture along three continua, namely, perceived roughness, hardness, and stickiness of the surfaces, shown previously as the primary dimensions of texture perception in direct touch. From the dissimilarity judgment experiment, we found that the texture percept is similar though not identical in the two scanning modes. From the adjective rating experiments, we found that while roughness ratings are similar, hardness and stickiness ratings tend to differ between scanning conditions. These differences between the two modes of scanning are apparent in perceptual space for tactile textures based on multidimensional scaling (MDS) analysis. Finally, we demonstrate that three physical quantities, vibratory power, compliance, and friction carry roughness, hardness, and stickiness information, predicting perceived dissimilarity of texture pairs with indirect touch. Given that different types of texture information are processed by separate groups of neurons across direct and indirect touch, we propose that the neural mechanisms underlying texture perception differ between scanning modes.


Somatosensory and Motor Research | 2003

The vibrations of texture

Sliman J. Bensmaia; Mark Hollins

The Pacinian channel has been implicated in the perception of fine textures (Hollins et al. , Somatosens Mot Res 18: 253-262, 2001a). In the present study, we investigate candidate codes for Pacinian-mediated roughness perception. We use a Hall effect transducer to record the vibrations elicited in the skin when a set of textured surfaces is passively presented to the index finger. The peak frequency of the vibrations is found to decrease systematically as spatial period increases. The power of the vibrations--weighted according to the spectral sensitivity of the Pacinian system--increases with spatial period for all but the coarsest surfaces. By varying the scanning velocity, we manipulate the temporal and intensive characteristics of the texture-induced vibrations and assess the effect of the manipulation on perceived roughness. We find that doubling the scanning velocity does not result in the substantial decrease in roughness predicted by a frequency theory of vibrotactile roughness perception. On the other hand, the effects of speed on roughness match those of speed on power. We propose that the roughness of a fine surface (spatial period<200 7 m) is a function of the Pacinian-weighted power of the vibrations it elicits.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Spatial and temporal codes mediate the tactile perception of natural textures

Alison I. Weber; Hannes P. Saal; Justin D. Lieber; Ju-Wen Cheng; Louise R. Manfredi; John F. Dammann; Sliman J. Bensmaia

text text text text text


Somatosensory and Motor Research | 2001

Vibrotactile adaptation impairs discrimination of fine, but not coarse, textures

Mark Hollins; Sliman J. Bensmaia; S. Washburn

The effect of vibrotactile adaptation on the ability to discriminate textured surfaces was examined in three experiments. The surfaces were rectilinear arrays of pyramids produced by etching of silicon wafers. Adaptation to 100-Hz vibration severely hampered discrimination of surfaces with spatial periods below 100 w m (Experiment 1), but had little effect on the discrimination of coarser textures (Experiment 2). To determine which vibrotactile channel—Rapidly Adapting or Pacinian—plays the larger role in mediating the discrimination of fine textures, widely separated adapting frequencies (10 and 250 Hz) were used in Experiment 3. The fact that high- but not low-frequency adaptation interfered with discrimination suggests that the Pacinian system contributes importantly to this ability. Taken as a whole, the results of this study strongly support the duplex theory of tactile texture perception, according to which different mechanisms—spatial and vibrotactile—mediate the perception of coarse and fine textures, respectively.The effect of vibrotactile adaptation on the ability to discriminate textured surfaces was examined in three experiments. The surfaces were rectilinear arrays of pyramids produced by etching of silicon wafers. Adaptation to 100-Hz vibration severely hampered discrimination of surfaces with spatial periods below 100 microm (Experiment 1), but had little effect on the discrimination of coarser textures (Experiment 2). To determine which vibrotactile channel--Rapidly Adapting or Pacinian--plays the larger role in mediating the discrimination of fine textures, widely separated adapting frequencies (10 and 250 Hz) were used in Experiment 3. The fact that high- but not low-frequency adaptation interfered with discrimination suggests that the Pacinian system contributes importantly to this ability. Taken as a whole, the results of this study strongly support the duplex theory of tactile texture perception, according to which different mechanisms--spatial and vibrotactile--mediate the perception of coarse and fine textures, respectively.


The Journal of Neuroscience | 2007

The Neural Coding of Stimulus Intensity: Linking the Population Response of Mechanoreceptive Afferents with Psychophysical Behavior

Michael A. Muniak; Supratim Ray; Steven S. Hsiao; J. Frank Dammann; Sliman J. Bensmaia

How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study, we investigated the neural code underlying the perception of stimulus intensity in the somatosensory system. We first characterized the responses of SA1 (slowly adapting type 1), RA (rapidly adapting), and PC (Pacinian) afferents of macaque monkeys to sinusoidal, diharmonic, and bandpass noise stimuli. We then had human subjects rate the perceived intensity of a subset of these stimuli. On the basis of these neurophysiological and psychophysical measurements, we evaluated a series of hypotheses about which aspect(s) of the neural activity evoked at the somatosensory periphery account for perception. We evaluated three types of neural codes. The first consisted of population codes based on the firing rate of neurons located directly under the probe. The second included population codes based on the firing rate of the entire population of active neurons. The third included codes based on the number of active afferents. We found that the response evoked in the localized population is logarithmic with stimulus amplitude (given a constant frequency composition), whereas the population response across all neurons is linear with stimulus amplitude. We conclude that stimulus intensity is best accounted for by the firing rate evoked in afferents located under or near the locus of stimulation, weighted by afferent type.


The Journal of Neuroscience | 2008

The Representation of Stimulus Orientation in the Early Stages of Somatosensory Processing

Sliman J. Bensmaia; Peter V. Denchev; J. Francis Dammann; James C. Craig; Steven S. Hsiao

At an early stage of processing, a stimulus is represented as a set of contours. In the representation of form, a critical feature of these local contours is their orientation. In the present study, we investigate the representation of orientation at the somatosensory periphery and in primary somatosensory cortex. We record the responses of mechanoreceptive afferents and of neurons in areas 3b and 1 to oriented bars and edges using a variety of stimulus conditions. We find that orientation is not explicitly represented in the responses of single afferents, but a large proportion of orientation detectors (∼50%) can be found in areas 3b and 1. Many neurons in both areas exhibit orientation tuning that is preserved across modes of stimulus presentation (scanned vs indented) and is relatively insensitive to other stimulus parameters, such as amplitude and speed, and to the nature of the stimulus, bar or edge. Orientation-selective neurons tend to be more SA (slowly adapting)-like than RA (rapidly adapting)-like, and the strength of the orientation signal is strongest during the sustained portion of the response to a statically indented bar. The most orientation-selective neurons in SI are comparable in sensitivity with that measured in humans. Finally, responses of SI neurons to bars and edges can be modeled with a high degree of accuracy using Gaussian or Gabor filters. The similarity in the representations of orientation in the visual and somatosensory systems suggests that analogous neural mechanisms mediate early visual and tactile form processing.

Collaboration


Dive into the Sliman J. Bensmaia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James C. Craig

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Sung Soo Kim

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Francesco Tenore

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark Hollins

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge