Smarajit Maiti
Vidyasagar University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Smarajit Maiti.
Environmental Toxicology | 2012
Smarajit Maiti; Sandip Chattopadhyay; Bimal Deb; Tanmoy Samanta; Gurupada Maji; Bappaditya Pan; Amar Ghosh; Debidas Ghosh
Arsenic is an environmental toxicant, free‐radical generator, carcinogenic agent, and aging promoter. Recently, blood samples were analyzed from individuals (control‐ male 12, female 13; arsenic‐exposed‐ male 16, female 14; and exposed to ≥100 μg/L As, ≥10 y) with dermatological symptoms in few affected villages in Eastern India to unravel their hematopoietic, metabolic, and antioxidant profiles. White blood cells recovered from buffy coat were used for DNA fragmentation test. Present observation suggests that significant number of individuals developed pigmentation and palmoplantar hyperkeratosis with black‐brownish patch on their body and many of those developed carcinomas. Hematopoietic data show a significant increase in eosinophil and decrease in monocyte count in either sex. Though insignificant, an increase in neutrophil in female and lymphocyte count in male arsenic‐exposed individuals are supported by the earlier report on sex dimorphic immune sensitization. Significant increase in serum alanine transaminase in both sexes and bilirubin only in male suggests the eventuality of hepatic disintegration. Arsenic exposure significantly decreased serum amylase in female. A significant decrease in antioxidant components like catalase, soluble thiol, and recently recognized uric acid worsened the situation by generating free radicals as observed in significant rise in malondialdehyde level, which finally increased DNA fragmentation and arsenic‐associated mutagenesis and carcinogenesis. This could attribute to lowering in immune competence and related necrotic and/or apoptotic manifestations.
Drug and Chemical Toxicology | 2012
Sandip Chattopadhyay; Bimal Deb; Smarajit Maiti
The present study elucidated the protective role of vitamin B12 with folic acid against arsenic-induced hepatotoxicity in female rats. Ingestion of sodium-arsenite– contaminated water [0.4 ppm/100 g body weight (b.w.)/day] in combination with vitamin B12 plus folic acid (0.07 and 4.0 μg, respectively/100 g b.w./day) for 24 days to Wistar rats offered a significant protection against alone arsenic-induced distorted liver function, damaged histoarchitecture, elevated oxidative stress, and DNA fragmentation of hepatic tissues. Arsenic only exposure decreased hepatic superoxide dismutase (SOD), catalase activities, and the level of nonprotein-soluble thiol (NPSH), with a concomitant increase in thiobarbituric acid reactive substances (TBARS) and conjugated dienes (CDs) in the liver. Vitamin supplementation restrained the increase of TBARS and CDs by restoring catalase, SOD, and NPSH levels. Restricted generation of free radicals may be correlated to the protection of DNA stability and hepatic morphology. This study explains the decisive role of vitamin B12 with folic acid to ameliorate arsenic-mediated liver injuries.
Molecular & Cellular Toxicology | 2014
Smarajit Maiti; Sandip Chattopadhyay; Nirmallya Acharyya; Bimal Deb; Amiya Kumar Hati
Present study demonstrates the therapeutic role of Emblica officinalis (EO) against arsenic-induced DNA and hepatic damage in female rats. Our earlier study on arsenic-exposed human unveils a link between tissue necrosis and carcinogenesis with impaired antioxidant system-associated DNA damage. Here we show ingestion of EO extract (500 mg in 0.1 mL water) in combination with sodium arsenite (0.4 ppm)/100 g b.w. for 24 days to rats offered significant protection against arsenic-induced oxidative damages of DNA and hepatic tissue architecture. Arsenic only exposure decreased hepatic superoxide dismutase, catalase activities and the level of non protein soluble thiol with a concomitant increase in thiobarbituric acid reactive substances and conjugated di-enes which are restrained by EO with a restoration of antioxidant components. In conclusion, restricted generation of free radicals is correlated to DNA protection resulting in prevention of tissue necrosis and possible carcinogenesis.
Environmental Toxicology | 2015
Nirmallya Acharyya; Sk. Sajed Ali; Bimal Deb; Sandip Chattopadhyay; Smarajit Maiti
This study elucidates the protective role of Green tea (Camellia sinensis or CS) against arsenic‐induced mutagenic DNA‐breakage/intestinal (small) damages in female rats. Intestinal epithelial cells receive ingested arsenic initially. Though, the possibility of damages in this tissue is immense and the therapeutic strategies against this damage are of great concern, reports on either issue are scanty. Our earlier study on arsenic‐exposed human unveils a link between carcinogenesis and mutagenic DNA damage. Here, we demonstrate that supplementation of CS‐extract (10 mg/mL water) with NaAsO2 (0.6 ppm)/100 g b.w. for 28 days to rats offered a significant protection against arsenic‐induced oxidative damages to DNA and intestinal (small) tissues by buttressing antioxidant systems. Necrotic and apoptotic damages and their CS‐protection are shown in DNA‐fragmentation, comet‐assay, and histoarchitecture (hematoxylin and eosin and periodic acid‐schiff staining) results. Only arsenic exposure significantly decreased intestinal superoxide dismutase, catalase activities, and level of soluble thiol with a concomitant increase in malondialdehyde/conjugated dienes. Alteration of serum necrotic marker lactate dehydrogenase and the metabolic inflammatory marker c‐reactive protein also indicate the impairment may be occurring at transcription and/or cellular signal transduction level. In addition, in situ incubation in rat intestinal loop filled for 24 h with NaAsO2 alone (250 µM) or with aqueous CS‐extract (250 mg/mL) suggests that small intestinal epithelial cells are significantly protected by CS against arsenic‐associated necrotic/mutagenic damages, which is observed in DNA‐breakage studies. In conclusion, besides intensifying endogenous antioxidant system, CS polyphenols also offer a direct role on free radical scavenging activity that is associated to the protection from mutagenic DNA‐breakages and prevention of tissue necrosis/carcinogenesis generated by arsenic.
Journal of Environmental Science and Health Part C-environmental Carcinogenesis & Ecotoxicology Reviews | 2014
Nirmallya Acharyya; Sandip Chattopadhyay; Smarajit Maiti
Green tea (Camellia sinensis; CS) strongly reverses/prevents arsenic-induced apoptotic hepatic degeneration/micronecrosis and mutagenic DNA damage in in vitro oxidant stress model and in rat as shown by comet assay and histoarchitecture (HE and PAS staining) results. Earlier, we demonstrated a link between carcinogenesis and impaired antioxidant system-associated mutagenic DNA damage in arsenic-exposed human. In this study, arsenic-induced (0.6 ppm/100 g body weight/day for 28 days) impairment of cytosolic superoxide-dismutase (SOD1), catalase, xanthine-oxidase, thiol, and urate activities/levels led to increase in tissue levels of damaging malondialdehyde, conjugated dienes, serum necrotic-marker lactate-dehydrogenase, and metabolic inflammatory-marker c-reactive protein suggesting dysregulation at the transcriptional/signal-transduction level. These are decisively restrained by CS-extract (≥10 mg/ml aqueous) with a restoration of DNA/tissue structure. The structural/functional impairment of dialyzed and centrifugally concentrated (6–8 kd cutoff) hepatic SOD1 via its important Cys modifications by H2O2/arsenite redox-stress and that protection by CS/2-mercaptoethanol are shown in in vitro/in situ studies paralleling the present Swiss-Model-generated rSOD1 structural data. Here, arsenite(3+) incubation (≥10−8 μM + 10 mM H2O2, 2 hr) is shown for the first time with this low-concentration to initiate breakage in rat hepatic-DNA in vitro whereas, arsenite/H2O2/UV-radiation does not affect DNA separately. Arsenic initiates Fe and Cu ion-associated free-radical reaction cascade in vivo. Here, 10 μM of Cu(2+)/Fe(3+)/As(3+) +H2O2-induced in vitro DNA fragmentation is prevented by CS (≥1 mg/ml), greater than the prevention of ascorbate or tocopherol or DMSO or their combination. Moreover, CS incubation for various time with differentially and already degraded DNA resulted from pre-incubation in 10 μM As(3+)-H2O2 system markedly recovers broken DNA. Present results decisively suggest for the first time that CS and its mixed polyphenols have potent SOD1 protecting, diverse radical-scavenging and antimutagenic activities furthering to DNA protection/therapy in arsenic-induced tissue necrosis/apoptosis.
PLOS ONE | 2015
Anindya Sundar Panja; Bidyut Bandopadhyay; Smarajit Maiti
Introduction Protein thermostability is an important field for its evolutionary perspective of mesophilic versus thermophilic relationship and for its industrial/ therapeutic applications. Methods Presently, a total 400 (200 thermophilic and 200 mesophilic homologue) proteins were studied utilizing several software/databases to evaluate their amino acid preferences. Randomly selected 50 homologous proteins with available PDB-structure of each group were explored for the understanding of the protein charges, isoelectric-points, hydrophilicity, hydrophobicity, tyrosine phosphorylation and salt-bridge occurrences. These 100 proteins were further probed to generate Ramachandran plot/data for the gross secondary structure prediction in and comparison between the thermophilic and mesophilic proteins. Results Present results strongly suggest that nonpolar smaller volume amino acids Ala (χ 2 = 238.54, p<0.001) and Gly (χ 2 = 73.35, p<0.001) are highly and Val moderately (χ 2 = 144.43, p<0.001) occurring in the 85% of thermophilic proteins. Phospho-regulated Tyr and redox-sensitive Cys are also moderately distributed (χ 2~20.0, p<0.01) in a larger number of thermophilic proteins. A consistent lower distribution of thermophilicity and discretely higher distribution of hydrophobicity is noticed in a large number of thermophilic versus their mesophilic protein homolog. The mean differences of isoelectric points and charges are found to be significantly less (7.11 vs. 6.39, p<0.05 and 1 vs. -0.6, p<0.01, respectively) in thermophilic proteins compared to their mesophilic counterpart. The possible sites for Tyr phosphorylation are noticed to be 25% higher (p<0.05) in thermophilic proteins. The 60% thermophiles are found with higher number of salt bridges in this study. The average percentage of salt-bridge of thermophiles is found to be higher by 20% than their mesophilic homologue. The GLU-HIS and GLU-LYS salt-bridge dyads are calculated to be significantly higher (p<0.05 and p<0.001, respectively) in thermophilic and GLU-ARG is higher in the mesophilic proteins. The Ramachandran plot/ data suggest a higher abundance of the helix, left-handed helix, sheet, nonplanar peptide and lower occurrence of cis peptide, loop/ turn and outlier in thermophiles. Pearson’s correlation result suggests that the isoelectric points of mesophilic and thermophilic proteins are positively correlated (r = 0.93 and 0.84, respectively; p<0.001) to their corresponding charges. And their hydrophilicity is negatively associated with the corresponding hydrophobicity (r = -0.493, p<0.001 and r = -0.324, p<0.05) suggesting their reciprocal evolvement. Conclusions Present results for the first time with this large amount of datasets and multiple contributing factors suggest the greater occurrence of hydrophobicity, salt-bridges and smaller volume nonpolar residues (Gly, Ala and Val) and lesser occurrence of bulky polar residues in the thermophilic proteins. A more stoichiometric relationship amongst these factors minimized the hindrance due to side chain burial and increased compactness and secondary structural stability in thermophilic proteins.
PLOS ONE | 2013
Suman Bhattacharya; Rajeshwary Ghosh; Smarajit Maiti; Gausal Azam Khan; Asru K. Sinha
Introduction Glucose has been reported to have an essential role in the synthesis and secretion of insulin in hepatocytes. As the efflux of glucose is facilitated from the liver cells into the circulation, the mechanism of transportation of glucose into the hepatocytes for the synthesis of insulin was investigated. Methods Grated liver suspension (GLS) was prepared by grating intact liver from adult mice by using a grater. Nitric oxide (NO) was measured by methemoglobin method. Glucose transporter-4 (Glut-4) was measured by immunoblot technique using Glut-4 antibody. Results Incubation of GLS with different amounts of glucose resulted in the uptake of glucose by the suspension with increased NO synthesis due to the stimulation of a glucose activated nitric oxide synthase that was present in the liver membrane. The inhibition of glucose induced NO synthesis resulted in the inhibition of glucose uptake. Glucose at 0.02M that maximally increased NO synthesis in the hepatocytes led to the translocation and increased synthesis of Glut-4 by 3.3 fold over the control that was inhibited by the inhibition of NO synthesis. The glucose induced NO synthesis was also found to result in the synthesis of insulin, in the presence of glucose due to the expression of both proinsulin genes I and II in the liver cells. Conclusion It was concluded that glucose itself facilitated its own transportation in the liver cells both via Glut-4 and by the synthesis of NO which had an essential role for insulin synthesis in the presence of glucose in these cells.
Central nervous system agents in medicinal chemistry | 2017
Smarajit Maiti; Nirmallya Acharyya; Tamal K. Ghosh; Sk. Sajed Ali; Emili Manna; Aarifa Nazmeen; Nirmalya Kumar Sinha
BACKGROUND Chronic arsenic-exposure even at a low-dose results in the neural impairment and motor/cognitive dysfunction. However, several preventive approaches are made mainly against hepatic/ gastrointestinal damages. Only a few investigations postulate therapeutic strategies for neural anomalies. Here, the protective role of Green tea (Camellia sinensis or CS; 10mg/ml aqueous) has been evaluated against arsenic-induced (0.6ppm/100g bw/28 days) cerebral/cerebellar tissue degeneration, oxidative-threats and neurotransmitter deregulation in female rats. METHODS AND RESULTS The Dunnetts t test and multiple-comparison ANOVA-test suggest that arsenic significantly decreased free thiol level with an increase in lipid-peroxidised product and damages to the tissue-structure. A significant decrease in serum urate accompanied by increases in C-reactive protein and TNF-α, an acute-phase inflammatory cytokine, strongly suggests a possible mechanism of oxidative- inflammatory tissue injury being supported by the increase in lactate-dehydrogenase activity. In addition, suppression in cytosolic superoxide-dismutase (Cu-Zn isoform/SOD1; NBT reduction-test) and an insufficient protection through catalase activity culminate free radical-related damages. In-vitro, H2O2 inactivated partially-purified (dialyzed/concentrated, 6-8kd cutoff-Millipore) rat liver SOD1 and that was markedly protected by 2-mercaptoethanol. Though significant signs of toxicities were noticed at biochemical/cellular level, the present treatment did not affect DNA (DNA-fragmentation assay) in the brain tissues. The CS supplementation significantly protected serum/tissue antioxidant-components, prevented inflammatory-responses and decreased lipid-peroxidation in brain resulting in increased tissue integrity. Moreover, arsenic-induced impairment of neurotransmitters i.e. glycine, glutamate and aspartate levels in cerebral tissue were significantly restored in CS-supplemented group. CONCLUSION Taken together, this investigation indicates the potent neuroprotective and antioxidative efficiencies of Camellia sinensis against arsenic-induced oxidative threat.
Journal of Clinical and Experimental Cardiology | 2016
Emili Manna; Smarajit Maiti
Reduction in plasma low-density lipoprotein is a fundamental treatment for the prevention of acute coronary syndromes (ACS). Oxidization of low-density lipoprotein (LDL) particles leads to formation of atherosclerotic lesions and increased risk of cardiovascular disease (CVD) via a complex cascade of biochemical events occurring mostly within the arterial wall. The major advantage of drug those are treating with hypertension, hyperglycemia and hyperlipidemias to reduce the CVD morbidity and mortality are well established. However, the epidemiological evidences support that ingestion of certain foods in regular diet chart results to a reduction in of myocardial infarction markers and other CVD. Many reviews supported that the dietary antioxidants pertained to LDL oxidation and to vascular endothelial dysfunction. Polyphenol consumption is beneficial to maintain the plasma LDL level. This short commentary emphasising on health aspect depending on the published literature, which may provide some guidance for researchers in further investigations of cardiovascular health agents
Scientific Reports | 2015
Sarbashri Bank; Pradipta Jana; Smarajit Maiti; Santanu Guha; Asru K. Sinha
The aggregation of platelets on the plaque rupture site on the coronary artery is reported to cause both acute coronary syndromes (ACS) and acute myocardial infarction (AMI). While the inhibition of platelet aggregation by acetyl salicylic acid was reported to produce beneficial effects in ACS, it failed to do in AMI. The concentration of a stress induced protein (dermcidin isoform-2) was much higher in AMI than that in ACS. Incubation of normal platelet rich plasma (PRP) with dermcidin showed one high affinity (Kd = 40 nM) and one low affinity binding sites (Kd = 333 nM). When normal PRP was incubated with 0.4 μM dermcidin, the platelets became resistant to the inhibitory effect of aspirin similar to that in the case of AMI. Incubation of PRP from AMI with dermcidin antibody restored the sensitivity of the platelets to the aspirin effect. Incubation of AMI PRP pretreated with 15 μM aspirin, a stimulator of the NO synthesis, resulted in the increased production of NO in the platelets that removed the bound dermcidin by 40% from the high affinity binding sites of AMI platelets. When the same AMI PRP was retreated with 10 μM aspirin, the aggregation of platelets was completely inhibited by NO synthesis.