Smita Ghare
University of Louisville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Smita Ghare.
Toxicological Sciences | 2015
Akshata Moghe; Smita Ghare; Bryan Lamoreau; Mohammad K. Mohammad; Shirish Barve; Craig J. McClain; Swati Joshi-Barve
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant and its potential as a serious environmental health threat is beginning to be recognized. Humans are exposed to acrolein per oral (food and water), respiratory (cigarette smoke, automobile exhaust, and biocide use) and dermal routes, in addition to endogenous generation (metabolism and lipid peroxidation). Acrolein has been suggested to play a role in several disease states including spinal cord injury, multiple sclerosis, Alzheimers disease, cardiovascular disease, diabetes mellitus, and neuro-, hepato-, and nephro-toxicity. On the cellular level, acrolein exposure has diverse toxic effects, including DNA and protein adduction, oxidative stress, mitochondrial disruption, membrane damage, endoplasmic reticulum stress, and immune dysfunction. This review addresses our current understanding of each pathogenic mechanism of acrolein toxicity, with emphasis on the known and anticipated contribution to clinical disease, and potential therapies.
Alcoholism: Clinical and Experimental Research | 2012
Irina Kirpich; Smita Ghare; Jingwen Zhang; Leila Gobejishvili; Giorgi Kharebava; Swati Joshi Barve; David F. Barker; Akshata Moghe; Craig J. McClain; Shirish Barve
BACKGROUND Binge, as well as chronic, alcohol consumption affects global histone acetylation leading to changes in gene expression. It is becoming increasingly evident that these histone-associated epigenetic modifications play an important role in the development of alcohol-mediated hepatic injury. METHODS C57BL/6 mice were gavaged 3 times (12-hour intervals) with ethanol (EtOH; 4.5 g/kg). Hepatic histone deacetylase (Hdac) mRNAs were assessed by qRT-PCR. Total HDAC activity was estimated by a colorimetric HDAC activity/inhibition assay. Histone acetylation levels were evaluated by Western blot. Liver steatosis and injury were evaluated by histopathology, plasma aminotransferase (ALT) activity, and liver triglyceride accumulation. Expression of fatty acid synthase (Fas) and carnitine palmitoyl transferase 1a (Cpt1a) was also examined. HDAC 9 association with Fas promoter was analyzed. RESULTS Binge alcohol exposure resulted in alterations of hepatic Hdac mRNA levels. Down-regulation of HDAC Class I (Hdac 1), Class II (Hdac 7, 9, 10), and Class IV (Hdac 11) and up-regulation of HDAC Class I (Hdac 3) gene expression were observed. Correspondent to the decrease in HDAC activity, an increase in hepatic histone acetylation was observed. These molecular events were associated with microvesicular hepatic steatosis and injury characterized by increased hepatic triglycerides (48.02 ± 3.83 vs. 19.90 ± 3.48 mg/g liver, p < 0.05) and elevated plasma ALT activity (51.98 ± 6.91 vs. 20.8 ± 0.62 U/l, p < 0.05). Hepatic steatosis was associated with an increase in FAS and a decrease in CPT1a mRNA and protein expression. Fas promoter analysis revealed that binge EtOH treatment decreased HDAC 9 occupancy at the Fas promoter resulting in its transcriptional activation. CONCLUSIONS Deregulation of hepatic Hdac expression likely plays a major role in the binge alcohol-induced hepatic steatosis and liver injury by affecting lipogenesis and fatty acid β-oxidation.
Alcoholism: Clinical and Experimental Research | 2011
Smita Ghare; Madhuvanti Patil; Prachi Hote; Jill Suttles; Craig McClain; Shirish Barve; Swati Joshi-Barve
BACKGROUND Alcohol abuse has long-term deleterious effects on the immune system, and results in a depletion and loss of function of CD4(+) T lymphocytes, which regulate both innate and adaptive immunity. T-lymphocyte activation via T-cell receptor (TCR) involves the lipid raft colocalization and aggregation of proteins into the immunological signalosome, which triggers a signaling cascade resulting in the production of interleukin-2 (IL-2). IL-2 regulates the proliferation and clonal expansion of activated T cells and is essential for an effective immune response. The present work examines the mechanisms underlying ethanol-induced dysfunction of CD4(+) T lymphocytes based on the hypothesis that ethanol downregulates lipid raft-mediated TCR signal transduction and resultant IL-2 production. METHODS Primary or cultured human T lymphocytes were exposed to ethanol for 24 hours prior to stimulation with anti-CD3/anti-CD28 antibodies or phytohemagglutinin. Effects of ethanol exposure on TCR-signaling (including activation of Lck, ZAP70, LAT, and PLCγ1) and IL-2 gene expression were examined. RESULTS Exposure of both primary and cultured human CD4(+) T lymphocytes to physiologically relevant concentrations of ethanol leads to down-regulation of IL-2 mRNA and protein via inhibition of DNA-binding activity of NFAT, the essential transcription factor for IL-2. Ethanol decreases tyrosine phosphorylation and activation of upstream signaling proteins PLCγ1, LAT, ZAP70, and Lck. These effects are prevented by inhibition of metabolism of ethanol. Sucrose density gradient fractionation and confocal microscopy revealed that ethanol inhibited essential upstream lipid raft-mediated TCR-dependent signaling events, namely colocalization of Lck, ZAP70, LAT, and PLCγ1 with plasma membrane lipid rafts. CONCLUSIONS Overall, our data demonstrate that ethanol inhibits lipid raft-mediated TCR-signaling in CD4(+) T lymphocytes, resulting in suppression of IL-2 production. These findings may represent a novel mechanism underlying alcohol abuse-associated immune suppression and may be particularly relevant in diseases such as HIV/AIDS and hepatitis C virus infection where alcohol abuse is a known comorbidity.
Journal of Pharmacology and Experimental Therapeutics | 2011
Leila Gobejishvili; Diana Avila; David F. Barker; Smita Ghare; David Henderson; Guy N. Brock; Irina Kirpich; Swati Joshi-Barve; Sri Prakash Mokshagundam; Craig J. McClain; Shirish Barve
S-Adenosylmethionine (SAM) treatment has anti-inflammatory, cytoprotective effects against endotoxin-induced organ injury. An important component of the anti-inflammatory action of SAM involves down-regulation of the lipopolysaccharide (LPS)-induced transcriptional induction of tumor necrosis factor-α (TNF) expression by monocytes/macrophages. We examined the effect of SAM on expression and activity of LPS-induced up-regulation of phosphodiesterase 4 (PDE4), which regulates cellular cAMP levels and TNF expression. LPS treatment of RAW 264.7, a mouse macrophage cell line, led to the induction of Pde4b2 mRNA expression with no effect on Pde4a or Pde4d. SAM pretreatment led to a significant decrease in LPS-induced up-regulation of Pde4b2 expression in both RAW 264.7 cells and primary human CD14+ monocytes. Of note, the decreased Pde4b2 mRNA expression correlated with the SAM-dependent increase in the transcriptionally repressive histone H3 lysine 9 trimethylation on the Pde4b2 intronic promoter region. The SAM-mediated decrease in LPS-inducible Pde4b2 up-regulation resulted in an increase in cellular cAMP levels and activation of cAMP-dependent protein kinase A (PKA), which plays an inhibitory role in LPS-induced TNF production. In addition, SAM did not affect LPS-inducible inhibitor of nuclear factor-κB degradation or nuclear factor-κB (NF-κB)-p65 translocation into the nucleus but rather inhibited NF-κB transcriptional activity. These results demonstrate for the first time that inhibition of LPS-induced PDE4B2 up-regulation and increased cAMP-dependent PKA activation are significant mechanisms contributing to the anti-TNF effect of SAM. Moreover, these data also suggest that SAM may be used as an effective PDE4B inhibitor in the treatment of chronic inflammatory disorders in which TNF expression plays a significant pathogenic role.
World Journal of Gastroenterology | 2011
Akshata Moghe; Swati Joshi-Barve; Smita Ghare; Leila Gobejishvili; Irina Kirpich; Craig McClain; Shirish Barve
Alcoholism is a major health problem in the United States and worldwide, and alcohol remains the single most significant cause of liver-related diseases and deaths. Alcohol is known to influence nutritional status at many levels including nutrient intake, absorption, utilization, and excretion, and can lead to many nutritional disturbances and deficiencies. Nutrients can dramatically affect gene expression and alcohol-induced nutrient imbalance may be a major contributor to pathogenic gene expression in alcohol-induced liver disease (ALD). There is growing interest regarding epigenetic changes, including histone modifications that regulate gene expression during disease pathogenesis. Notably, modifications of core histones in the nucleosome regulate chromatin structure and DNA methylation, and control gene transcription. This review highlights the role of nutrient disturbances brought about during alcohol metabolism and their impact on epigenetic histone modifications that may contribute to ALD. The review is focused on four critical metabolites, namely, acetate, S-adenosylmethionine, nicotinamide adenine dinucleotide and zinc that are particularly relevant to alcohol metabolism and ALD.
Cellular and molecular gastroenterology and hepatology | 2016
Wei-Yang Chen; Jingwen Zhang; Smita Ghare; Shirish Barve; Craig J. McClain; Swati Joshi-Barve
Background & Aims Alcoholic liver disease (ALD) remains a major cause of morbidity and mortality, with no Food and Drug Administration–approved therapy. Chronic alcohol consumption causes a pro-oxidant environment and increases hepatic lipid peroxidation, with acrolein being the most reactive/toxic by-product. This study investigated the pathogenic role of acrolein in hepatic endoplasmic reticulum (ER) stress, steatosis, and injury in experimental ALD, and tested acrolein elimination/scavenging (using hydralazine) as a potential therapy in ALD. Methods In vitro (rat hepatoma H4IIEC cells) and in vivo (chronic+binge alcohol feeding in C57Bl/6 mice) models were used to examine alcohol-induced acrolein accumulation and consequent hepatic ER stress, apoptosis, and injury. In addition, the potential protective effects of the acrolein scavenger, hydralazine, were examined both in vitro and in vivo. Results Alcohol consumption/metabolism resulted in hepatic accumulation of acrolein-protein adducts, by up-regulation of cytochrome P4502E1 and alcohol dehydrogenase, and down-regulation of glutathione-s-transferase-P, which metabolizes/detoxifies acrolein. Alcohol-induced acrolein adduct accumulation led to hepatic ER stress, proapoptotic signaling, steatosis, apoptosis, and liver injury; however, ER-protective/adaptive responses were not induced. Notably, direct exposure to acrolein in vitro mimicked the in vivo effects of alcohol, indicating that acrolein mediates the adverse effects of alcohol. Importantly, hydralazine, a known acrolein scavenger, protected against alcohol-induced ER stress and liver injury, both in vitro and in mice. Conclusions Our study shows the following: (1) alcohol consumption triggers pathologic ER stress without ER adaptation/protection; (2) alcohol-induced acrolein is a potential therapeutic target and pathogenic mediator of hepatic ER stress, cell death, and injury; and (3) removal/clearance of acrolein by scavengers may have therapeutic potential in ALD.
Journal of Immunology | 2014
Smita Ghare; Swati Joshi-Barve; Akshata Moghe; Madhuvanti Patil; David F. Barker; Leila Gobejishvili; Guy N. Brock; Matthew C. Cave; Craig J. McClain; Shirish Barve
Activation-induced Fas ligand (FasL) mRNA expression in CD4+ T cells is mainly controlled at transcriptional initiation. To elucidate the epigenetic mechanisms regulating physiologic and pathologic FasL transcription, TCR stimulation–responsive promoter histone modifications in normal and alcohol-exposed primary human CD4+ T cells were examined. TCR stimulation of normal and alcohol-exposed cells led to discernible changes in promoter histone H3 lysine trimethylation, as documented by an increase in the levels of transcriptionally permissive histone 3 lysine 4 trimethylation and a concomitant decrease in the repressive histone 3 lysine 9 trimethylation. Moreover, acetylation of histone 3 lysine 9 (H3K9), a critical feature of the active promoter state that is opposed by histone 3 lysine 9 trimethylation, was significantly increased and was essentially mediated by the p300-histone acetyltransferase. Notably, the degree of these coordinated histone modifications and subsequent recruitment of transcription factors and RNA polymerase II were significantly enhanced in alcohol-exposed CD4+ T cells and were commensurate with the pathologic increase in the levels of FasL mRNA. The clinical relevance of these findings is further supported by CD4+ T cells obtained from individuals with a history of heavy alcohol consumption, which demonstrate significantly greater p300-dependent H3K9 acetylation and FasL expression. Overall, these data show that, in human CD4+ T cells, TCR stimulation induces a distinct promoter histone profile involving a coordinated cross-talk between histone 3 lysine 4 and H3K9 methylation and acetylation that dictates the transcriptional activation of FasL under physiologic, as well as pathologic, conditions of alcohol exposure.
Toxicology in Vitro | 2016
Smita Ghare; Hridgandh Donde; Wei-Yang Chen; David F. Barker; Leila Gobejishvilli; Craig J. McClain; Shirish Barve; Swati Joshi-Barve
Zidovudine (AZT) remains the mainstay of antiretroviral therapy against HIV in resource-poor countries; however, its use is frequently associated with hepatotoxicity. Not all HIV patients on AZT develop hepatotoxicity, and the determining factors are unclear. Alcohol consumption and cigarette smoking are known risk factors for HIV hepatotoxicity, and both are significant sources of acrolein, a highly reactive and toxic aldehyde. This study examines the potential hepatotoxic interactions between acrolein and AZT. Our data demonstrate that acrolein markedly enhanced AZT-induced transcriptionally permissive histone modifications (H3K9Ac and H3K9Me3) allowing the recruitment of transcription factor NF-kB and RNA polymerase II at the FasL gene promoter, resulting in FasL upregulation and apoptosis in hepatocytes. Notably, the acrolein scavenger, hydralazine prevented these promoter-associated epigenetic changes and inhibited FasL upregulation and apoptosis induced by the combination of AZT and acrolein, as well as AZT alone. Our data strongly suggest that acrolein enhancement of promoter histone modifications and FasL upregulation are major pathogenic mechanisms driving AZT-induced hepatotoxicity. Moreover, these data also indicate the therapeutic potential of hydralazine in mitigating AZT hepatotoxicity.
Clinical Immunology | 2015
Leila Gobejishvili; Smita Ghare; Rehan Khan; Alexander C. Cambon; David F. Barker; Shirish Barve; Craig J. McClain; Daniell B. Hill
Dysregulated cytokine metabolism plays a critical role in the pathogenesis of many forms of liver disease, including alcoholic and non-alcoholic liver disease. In this study we examined the efficacy of Misoprostol in modulating LPS-inducible TNFα and IL-10 expression in healthy human subjects and evaluated molecular mechanisms for Misoprostol modulation of cytokines in vitro. Healthy subjects were given 14day courses of Misoprostol at doses of 100, 200, and 300μg four times a day, in random order. Baseline and LPS-inducible cytokine levels were examined ex vivo in whole blood at the beginning and the end of the study. Additionally, in vitro studies were performed using primary human PBMCs and the murine macrophage cell line, RAW 264.7, to investigate underlying mechanisms of misoprostol on cytokine production. Administration of Misoprostol reduced LPS inducible TNF production by 29%, while increasing IL-10 production by 79% in human subjects with no significant dose effect on ex vivo cytokine activity; In vitro, the effect of Misoprostol was largely mediated by increased cAMP levels and consequent changes in CRE and NFκB activity, which are critical for regulating IL-10 and TNF expression. Additionally, chromatin immunoprecipitation (ChIP) studies demonstrated that Misoprostol treatment led to changes in transcription factor and RNA Polymerase II binding, resulting in changes in mRNA levels. In summary, Misoprostol was effective at beneficially modulating TNF and IL-10 levels both in vivo and in vitro; these studies suggest a potential rationale for Misoprostol use in ALD, NASH and other liver diseases where inflammation plays an etiologic role.
Journal of Interferon and Cytokine Research | 2014
Rafael Fernandez-Botran; Swati Joshi-Barve; Smita Ghare; Shirish Barve; Mary Young; Michael Plankey; Jose Bordon
The role of host response-related factors in the fast progression of liver disease in individuals co-infected with HIV and HCV viruses remains poorly understood. This study compared patterns of cytokines, caspase-1 activation, endotoxin exposure in plasma as well as interferon signaling in peripheral blood mononuclear cells from HIV/HCV co-infected (HIV(+)/HCV(+)), HCV mono-infected (HIV(-)/HCV(+)), HIV mono-infected (HIV(+)/HCV(-)) female patients and HIV- and HCV-uninfected women (HIV(-)/HCV(-)) who had enrolled in the Womens Interagency HIV Study (WIHS). HIV(+)/HCV(+) women had higher plasma levels of pro-inflammatory cytokines as well as caspase-1 compared with other groups. Both HIV(+)/HCV(+) and HIV(+)/HCV(-) women had significantly higher sCD14 levels compared with other groups. Peripheral blood mononuclear cells from HCV mono-infected patients had reduced levels of phosphorylation of STAT1 compared with other groups as well as lower basal levels of expression of the IFN-stimulated genes, OAS1, ISG15, and USP18 (UBP43). Basal expression of USP18, a functional antagonist of ISG15, as well as USP18/ISG15 ratios were increased in the HIV(+)/HCV(+) group compared with HIV(-)/HCV(+) and HIV(+)/HCV(-) groups. A more pronounced systemic inflammatory profile as well as increased expression ratios of USP18 to ISG15 may contribute to the more rapid progression of liver disease in HIV(+)/HCV(+) individuals.