Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Snehasis Daschakraborty is active.

Publication


Featured researches published by Snehasis Daschakraborty.


Journal of Chemical Physics | 2012

Medium decoupling of dynamics at temperatures ~100 K above glass-transition temperature: a case study with (acetamide + lithium bromide/nitrate) melts.

Biswajit Guchhait; Snehasis Daschakraborty; Ranjit Biswas

Time-resolved fluorescence Stokes shift and anisotropy measurements using a solvation probe in [0.78CH(3)CONH(2) + 0.22{f LiBr + (1-f) LiNO(3)}] melts reveal a strong decoupling of medium dynamics from viscosity. Interestingly, this decoupling has been found to occur at temperatures ∼50-100 K above the glass transition temperatures of the above melt at various anion concentrations (f(LiBr)). The decoupling is reflected via the following fractional viscosity dependence (η) of the measured average solvation and rotation times ( and , respectively): ∝ (η∕T)(p) (x being solvation or rotation), with p covering the range, 0.20 < p < 0.70. Although this is very similar to what is known for deeply supercooled liquids, it is very surprising because of the temperature range at which the above decoupling occurs for these molten mixtures. The kinship to the supercooled liquids is further exhibited via p which is always larger for than for , indicating a sort of translation-rotation decoupling. Multiple probes have been used in steady state fluorescence measurements to explore the extent of static heterogeneity. Estimated experimental dynamic Stokes shift for coumarin 153 in these mixtures lies in the range, 1000 < Δν(t)/cm(-1) < 1700, and is in semi-quantitative agreement with predictions from our semi-molecular theory. The participation of the fluctuating density modes at various length-scales to the observed solvation times has also been investigated.


Journal of Physical Chemistry B | 2011

Stokes shift dynamics in (ionic liquid + polar solvent) binary mixtures: composition dependence.

Snehasis Daschakraborty; Biswas Ranjit

An approximate semimolecular theory has been developed to investigate the composition dependence of Stokes shift dynamics of a fluorescent dye molecule dissolved in binary mixtures of an ionic liquid (IL) with a conventional polar solvent at different mole fractions. The theory expresses the dynamic Stokes shift as a sum of contributions from the dye-IL and the dye-polar solvent interactions and suggests substantial solute-cation dipole-dipole interaction contribution to the solvation energy relaxation. The theory, when applied to aqueous mixtures of 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]) and tetrafluoroborate ([Bmim][BF(4)]), and binary mixtures of ([Bmim][BF(4)] + acetonitrile), predicts reduction of Stokes shift but acceleration of the dynamics upon increasing the polar solvent concentration for the most part of the mixture composition. The decrease in dynamic Stokes shift values has been found to occur due to decrease of the dye-IL interaction in the presence of the added polar solvent. For aqueous binary mixtures of IL, the predicted results are in semiquantitative agreement with the available experimental results. However, the calculated dynamics suggest much weaker composition dependence than that observed in experiments. In addition, the theory predicts a turn around for dynamic Stokes shift in its composition dependence for ([Bmim][BF(4)] + acetonitrile) mixtures at higher dilutions of the IL. Interestingly, effective dipolar medium calculations for Stokes shift dynamics in ([Bmim][BF(4)] + dichloromethane) binary mixtures predict a very weak or even nonexistent nonlinear composition dependence. These predictions should be reexamined in experiments.


Journal of Chemical Physics | 2014

Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

Biswajit Guchhait; Suman Das; Snehasis Daschakraborty; Ranjit Biswas

Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH2 + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH2) considered are acetamide (CH3CONH2), propionamide (CH3CH2CONH2), and butyramide (CH3CH2CH2CONH2); the electrolytes (LiX) are lithium perchlorate (LiClO4), lithium bromide (LiBr), and lithium nitrate (LiNO3). Differential scanning calorimetric measurements reveal glass transition temperatures (T(g)) of these DEs are ~195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ~100-150 K above their individual T(g)s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH3CONH2 + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in terms of temporal heterogeneity and amide clustering in these multi-component melts.


Journal of Chemical Physics | 2012

Ultrafast solvation response in room temperature ionic liquids: Possible origin and importance of the collective and the nearest neighbour solvent modes

Snehasis Daschakraborty; Ranjit Biswas

Recent three-pulse photon echo peak shift (3PEPS) measurements [M. Muramatsu, Y. Nagasawa, and H. Miyasaka, J. Phys. Chem. A 115, 3886 (2011)] with several room temperature ionic liquids (RTILs) have revealed multi-exponential dynamics with ultrafast solvation timescale in the range, 20 < τ(1)∕fs < 250, for both imidazolium and phosphonium RTILs. This is striking for two reasons: (i) the timescale is much faster than those reported by the dynamic Stokes shift (DSS) experiments [S. Arzhantsev, H. Jin, G. A. Baker, and M. Maroncelli, J. Phys. Chem. B 111, 4978 (2007)] and (ii) sub-hundered femtosecond solvation response in phosphonium ionic liquids is reported for the first time. Here, we present a mode coupling theory based calculation where such ultrafast solvation in 3PEPS measurements has been visualized to originate from the nearest neighbour solute-solvent interaction. Consideration of Lennard-Jones interaction for the nearest neighbour solute-solvent non-dipolar interaction leads to biphasic dynamics with a predicted ultrafast time constant in the ∼100-250 fs range, followed by a slower one similar to that reported by the 3PEPS measurements. In addition, the calculated fast time constants and amplitudes are found to be in general agreement with those from computer simulations. Different microscopic mechanisms for ultrafast solvation response measured by the 3PEPS and DSS experiments have been proposed and relative contributions of the collective and nearest neighbour solvent modes investigated. Relation between the single particle rotation and ultrafast polar solvation in these RTILs has been explored. Our analyses suggest 3PEPS and DSS experiments are probably sensitive to different components of the total solvation energy relaxation of a laser-excited dye in a given ionic liquid. Several predictions have also been made, which may be re-examined via suitable experiments.


Journal of Chemical Physics | 2014

Dielectric relaxation in ionic liquids: Role of ion-ion and ion-dipole interactions, and effects of heterogeneity

Snehasis Daschakraborty; Ranjit Biswas

A semi-molecular theory for studying the dielectric relaxation (DR) dynamics in ionic liquids (ILs) has been developed here. The theory predicts triphasic relaxation of the generalized orientational correlation function in the collective limit. Relaxation process involves contributions from dipole-dipole, ion-dipole, and ion-ion interactions. While the dipole-dipole and ion-ion interactions dictate the predicted three relaxation time constants, the relaxation amplitudes are determined by dipole-dipole, ion-dipole, and ion-ion interactions. The ion-ion interaction produces a time constant in the range of 5-1000μs which parallels with the conductivity dominated dielectric loss peak observed in broadband dielectric measurements of ILs. Analytical expressions for two time constants originating from dipolar interactions in ILs match exactly with those derived earlier for dipolar solvents. The theory explores relations among single particle rotational time, collective rotational time, and DR time for ILs. Use of molecular volume for the rotating dipolar ion of a given IL leads to a predicted DR time constant much larger than the slowest DR time constant measured in experiments. In contrast, similar consideration for dipolar liquids produces semi-quantitative agreement between theory and experiments. This difference between ILs and common dipolar solvents has been understood in terms of extremely low effective rotational volume of dipolar ion, argued to arise from medium heterogeneity. Effective rotational volumes predicted by the present theory for ILs are in general agreement with estimates from experimental DR data and simulation results. Calculations at higher temperatures predict faster relaxation time constants reducing the difference between theory and experiments.


Journal of Physical Chemistry B | 2014

Composition Dependent Stokes Shift Dynamics in Binary Mixtures of 1-Butyl-3-methylimidazolium Tetrafluoroborate with Water and Acetonitrile: Quantitative Comparison between Theory and Complete Measurements

Snehasis Daschakraborty; Ranjit Biswas

Here we predict, using a semimolecular theory, the Stokes shift dynamics of a dipolar solute in binary mixtures of an ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]), with water (H2O) and acetonitrile (CH3CN), and compare with the experimental results. The latter are from the recent measurements that combined broad-band fluorescence up-conversion (FLUPS) with time-correlated single photon counting (TCSPC) techniques and used coumarin 153 (C153) as a solute probe. Nine different compositions of ([Bmim][BF4] + H2O) and ([Bmim][BF4] + CH3CN) binary mixtures are considered for the extensive comparison between theory and experiments. Two separate model calculations have been performed using the available experimental frequency dependent dielectric function, ε(ω). These calculations semiquantitatively reproduce the experimentally observed (i) IL mole fraction dependence of dynamic Stokes shifts in these mixtures, (ii) composition dependence of average fast, slow, and solvation times, (iii) viscosity dependence of slow times, and (iv) the nonlinear dependence of average solvation times on experimental inverse conductivity. Variations of the calculated dynamics on water dipole moment values (gas phase or liquid phase) and sensitivity to different measurements of ε(ω) for ([Bmim][BF4] + H2O) mixtures are examined. In addition, the importance of the missing contribution to experimental ε(ω) from high frequency collective solvent intermolecular modes for generating the experimentally observed sub-picosecond solvation response in these (IL + polar solvent) binary mixtures has been explored.


Journal of Chemical Sciences | 2012

Does polar interaction influence medium viscosity? A computer simulation investigation using model liquids

Snehasis Daschakraborty; Ranjit Biswas

AbstractMolecular dynamics simulations of model liquids interacting via Lennard–Jones (L–J) and Stockmayer (SM) interactions have been carried out to explore the effects of the longer-ranged dipole–dipole interaction on solvent viscosity and diffusion. Switching on of the dipolar interaction at a fixed density and temperature has been found to increase the viscosity over that of the LJ liquid, the extent of increase being a few percent to as large as ∼60% depending on the magnitude of the solvent dipole moment used in the SM potential. The simulated translational and rotational diffusion coefficients show strong dipole moment and temperature dependences, eventhough effects of these parameters on solvent–solvent radial distribution function are moderate. Interestingly, a partial solute–solvent decoupling is observed when the simulated translational and rotational diffusion coefficients are connected to the simulated viscosity coefficients via the Stokes–Einstein (SE) and Stokes–Einstein–Debye (SED) relations. In the limit of large dipole moment, simulated self-part of the van Hove correlation function at intermediate times reveals a departure from the Gaussian distribution with particle displacement. This suggests that dynamic heterogeneity is one of the reasons for the departure of centre-of-mass diffusion from the SE relation in these model systems. Graphical AbstractSimulated results for Lennard–Jones and Stockmayer fluids at 300 K using parameters for argon at ∼1.14 g/cm3 are shown. Lines going through the simulated data are for visual guide. Note that the maximum increase in viscosity with dipole moment is nearly 60%.


Journal of Physical Chemistry B | 2016

How Acidic Is Carbonic Acid

Dina Pines; Tzach Mukra; Yifat Miller; Philip M. Kiefer; Snehasis Daschakraborty; James T. Hynes; Ehud Pines

Carbonic, lactic, and pyruvic acids have been generated in aqueous solution by the transient protonation of their corresponding conjugate bases by a tailor-made photoacid, the 6-hydroxy-1-sulfonate pyrene sodium salt molecule. A particular goal is to establish the pK(a) of carbonic acid H2CO3. The on-contact proton transfer (PT) reaction rate from the optically excited photoacid to the carboxylic bases was derived, with unprecedented precision, from time-correlated single-photon-counting measurements of the fluorescence lifetime of the photoacid in the presence of the proton acceptors. The time-dependent diffusion-assisted PT rate was analyzed using the Szabo-Collins-Kimball equation with a radiation boundary condition. The on-contact PT rates were found to follow the acidity order of the carboxylic acids: the stronger was the acid, the slower was the PT reaction to its conjugate base. The pK(a) of carbonic acid was found to be 3.49 ± 0.05 using both the Marcus and Kiefer-Hynes free energy correlations. This establishes H2CO3 as being 0.37 pK(a) units stronger and about 1 pK(a) unit weaker, respectively, than the physiologically important lactic and pyruvic acids. The considerable acid strength of intact carbonic acid indicates that it is an important protonation agent under physiological conditions.


Journal of Chemical Physics | 2016

Dielectric relaxation in ionic liquid/dipolar solvent binary mixtures: A semi-molecular theory

Snehasis Daschakraborty; Ranjit Biswas

A semi-molecular theory is developed here for studying dielectric relaxation (DR) in binary mixtures of ionic liquids (ILs) with common dipolar solvents. Effects of ion translation on DR time scale, and those of ion rotation on conductivity relaxation time scale are explored. Two different models for the theoretical calculations have been considered: (i) separate medium approach, where molecularities of both the IL and dipolar solvent molecules are retained, and (ii) effective medium approach, where the added dipolar solvent molecules are assumed to combine with the dipolar ions of the IL, producing a fictitious effective medium characterized via effective dipole moment, density, and diameter. Semi-molecular expressions for the diffusive DR times have been derived which incorporates the effects of wavenumber dependent orientational static correlations, ion dynamic structure factors, and ion translation. Subsequently, the theory has been applied to the binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) with water (H2O), and acetonitrile (CH3CN) for which experimental DR data are available. On comparison, predicted DR time scales show close agreement with the measured DR times at low IL mole fractions (x(IL)). At higher IL concentrations (x(IL) > 0.05), the theory over-estimates the relaxation times and increasingly deviates from the measurements with x(IL), deviation being the maximum for the neat IL by almost two orders of magnitude. The theory predicts negligible contributions to this deviation from the x(IL) dependent collective orientational static correlations. The drastic difference between DR time scales for IL/solvent mixtures from theory and experiments arises primarily due to the use of the actual molecular volume (V(mol)(dip)) for the rotating dipolar moiety in the present theory and suggests that only a fraction of V(mol)(dip) is involved at high x(IL). Expectedly, nice agreement between theory and experiments appears when experimental estimates for the effective rotational volume (V(eff)(dip)) are used as inputs. The fraction, V(eff)(dip)/V(mol)(dip), sharply decreases from ∼1 at pure dipolar solvent to ∼0.01 at neat IL, reflecting a dramatic crossover from viscosity-coupled hydrodynamic angular diffusion at low IL mole fractions to orientational relaxation predominantly via large angle jumps at high x(IL). Similar results are obtained on applying the present theory to the aqueous solution of an electrolyte guanidinium chloride (GdmCl) having a permanent dipole moment associated with the cation, Gdm(+).


Journal of Physical Chemistry B | 2016

Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution I: Acid and Base Coordinate and Charge Dynamics.

Snehasis Daschakraborty; Philip M. Kiefer; Yifat Miller; Yair Motro; Dina Pines; Ehud Pines; James T. Hynes

Protonation by carbonic acid H2CO3 of the strong base methylamine CH3NH2 in a neutral contact pair in aqueous solution is followed via Car-Parrinello molecular dynamics simulations. Proton transfer (PT) occurs to form an aqueous solvent-stabilized contact ion pair within 100 fs, a fast time scale associated with the compression of the acid-base hydrogen-bond (H-bond), a key reaction coordinate. This rapid barrierless PT is consistent with the carbonic acid-protonated base pKa difference that considerably favors the PT, and supports the view of intact carbonic acid as potentially important proton donor in assorted biological and environmental contexts. The charge redistribution within the H-bonded complex during PT supports a Mulliken picture of charge transfer from the nitrogen base to carbonic acid without altering the transferring hydrogens charge from approximately midway between that of a hydrogen atom and that of a proton.

Collaboration


Dive into the Snehasis Daschakraborty's collaboration.

Top Co-Authors

Avatar

Ranjit Biswas

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

Biswajit Guchhait

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

James T. Hynes

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Philip M. Kiefer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Dina Pines

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Ehud Pines

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Yifat Miller

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Sandipa Indra

S.N. Bose National Centre for Basic Sciences

View shared research outputs
Top Co-Authors

Avatar

Vikas Dubey

Indian Institute of Technology Patna

View shared research outputs
Top Co-Authors

Avatar

Yair Motro

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge