Snezna Sodin-Semrl
University of Primorska
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Snezna Sodin-Semrl.
Journal of Biological Chemistry | 2006
Shu Jen Chen; Hongyan Ning; Wataru Ishida; Snezna Sodin-Semrl; Shinsuke Takagawa; Yasuji Mori; John Varga
Transforming growth factor-β (TGF-β) stimulates collagen synthesis and accumulation, and aberrant TGF-β signaling is implicated in pathological organ fibrosis. Regulation of type I procollagen gene (COL1A2) transcription by TGF-β involves the canonical Smad signaling pathway as well as additional protein and lipid kinases, coactivators, and DNA-binding transcription factors that constitute alternate non-Smad pathways. By using Affymetrix microarrays to detect cellular genes whose expression is regulated by Smad3, we identified early growth response factor-1 (EGR-1) as a novel Smad3-inducible gene. Previous studies implicated Egr-1 in cell growth, differentiation, and survival. We found that TGF-β induced rapid and transient accumulation of Egr-1 protein and mRNA in human skin fibroblasts. In transient transfection assays, TGF-β stimulated the activity of the Egr-1 gene promoter, as well as that of a minimal Egr-1-responsive reporter construct. Furthermore, TGF-β enhanced endogenous Egr-1 interaction with a consensus Egr-1-binding site element and with GC-rich DNA sequences of the human COL1A2 promoter in vitro and in vivo. Forced expression of Egr-1 by itself caused dose-dependent up-regulation of COL1A2 promoter activity and further enhanced the stimulation induced by TGF-β. In contrast, the TGF-β response was abrogated when the Egr-1-binding sites of the COL1A2 promoter were mutated or deleted. Furthermore, Egr-1-deficient embryonic mouse fibroblasts showed attenuated TGF-β responses despite intact Smad activation, and forced expression of ectopic EGR-1 in these cells could restore COL1A2 stimulation in a dose-dependent manner. Taken together, these findings identify Egr-1 as a novel intracellular TGF-β target that is necessary for maximal stimulation of collagen gene expression in fibroblasts. The results therefore implicate Egr-1 in the profibrotic responses elicited by TGF-β and suggest that Egr-1 may play a new and important role in the pathogenesis of fibrosis.
Arthritis Research & Therapy | 2012
Katja Lakota; Jun-Rong Wei; Mary Carns; Monique Hinchcliff; Jungwha Lee; Michael L. Whitfield; Snezna Sodin-Semrl; John Varga
IntroductionProgressive fibrosis in systemic sclerosis (SSc) is linked to aberrant transforming growth factor beta (TGF-beta) signaling. Peroxisome proliferator-activated receptor gamma (PPAR-gamma) blocks fibrogenic TGF-beta responses in vitro and in vivo. Reduced expression and function of PPAR-gamma in patients with SSc may contribute to progression of fibrosis. Here we evaluated the levels of adiponectin, a sensitive and specific index of PPAR-gamma activity, as a potential fibrogenic biomarker in SSc.MethodsAdiponectin levels were determined in the sera of 129 patients with SSc and 86 healthy controls, and serial determinations were performed in 27 patients. Levels of adiponectin mRNA in skin biopsies from SSc patients were assessed in an expression profiling microarray dataset. Regulation of adiponectin gene expression in explanted human subcutaneous preadipocytes and fibroblasts was examined by real-time quantitative PCR.ResultsPatients with diffuse cutaneous SSc had reduced serum adiponectin levels. A significant inverse correlation between adiponectin levels and the modified Rodnan skin score was observed. In longitudinal studies changes in serum adiponectin levels were inversely correlated with changes in skin fibrosis. Skin biopsies from a subset of SSc patients showed reduced adiponectin mRNA expression which was inversely correlated with the skin score. An agonist ligand of PPAR-gamma potently induced adiponectin expression in explanted mesenchymal cells in vitro.ConclusionsLevels of adiponectin, reflecting PPAR-gamma activity, are correlated with skin fibrosis and might have potential utility as a biomarker in SSc.
Autoimmunity Reviews | 2012
Andrej Artenjak; Katja Lakota; Mojca Frank; Saša Čučnik; Blaž Rozman; Borut Božič; Yehuda Shoenfeld; Snezna Sodin-Semrl
The role of antiphospholipid antibodies (aPL) associated with cardiovascular diseases has been extensively studied in autoimmune patients, however it was largely unknown whether and how aPL associate with coronary artery disease (CAD), ishemic stroke (IS) and peripheral artery disease (PAD) in non-autoimmune patients. The current review attempts to prioritize for the first time clinical studies based on cause-outcome and strengths relationships in reference to aPL and CAD/PAD, in addition to supplementing Breys comprehensive review on IS with other, additional studies. Our overview indicates that all case-control and cross-sectional studies found an aPL association with CAD, PAD and IS, while cohort and nested case-control studies reported a prevailing negative risk association between aPL and IS (confirming Brey), with an unclear/unresolved risk association between aPL and CAD. The only cohort, follow-up study found in PAD reported on positive risk association between aPL and disease. The most frequently associated aPL in all studies reported, irrespective of disease, was aCL, with a less frequent association reported for LA, aβ2GPI and other aPL.
International Journal of Nanomedicine | 2015
Mukta Kulkarni; Ajda Flašker; Maruša Lokar; Katjusa Mrak-Poljsak; Anca Mazare; Andrej Artenjak; Saša Čučnik; Slavko Kralj; Aljaž Velikonja; Patrik Schmuki; Veronika Kralj-Iglič; Snezna Sodin-Semrl; Aleš Iglič
Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices.
European Journal of Inflammation | 2007
K. Lakota; K. Mrak-Poljšak; B. Rozman; T. Kveder; M. Tomšič; Snezna Sodin-Semrl
Inflammation is considered to be the driving force leading to atherogenic and atherosclerotic mechanisms. Increased levels of SAA predict the risk of coronary artery disease and even mortality from cardiovascular disease in humans. Recent animal and human studies have indicated that SAA plays a causal role in atherogenesis, although it is largely unclear how this occurs. The objectives of this study are to understand the role of SAA in activating possible atherogenic inflammatory responses in human coronary artery endothelial cells (HCAEC) and to compare them with human umbilical vein endothelial cells (HUVEC). Our hypothesis is that vein and artery endothelial cells have different expression patterns and levels, leading to differential inflammatory responses. HUVEC and HCAEC were grown in order to analyze the effects of SAA on endothelial expression of pro-inflammatory cytokines, such as IL-6, chemokines, such as IL-8, and adhesion molecules (s-ICAM, s-VCAM, E-selectin) by reverse transcription-PCR and ELISAs. We compared the dose responses of SAA between HUVEC and HCAEC. SAA activated both HUVEC and HCAEC pro-inflammatory factors in a dose-dependent manner. In comparison however, HCAEC showed a strikingly greater sensitivity to SAA, with a higher level of expression of all pro-inflammatory markers at much lower concentrations of SAA, and their much greater stimulation at higher SAA concentrations. SAA also generated a dose-dependent positive feedback response on its own mRNA expression in HCAEC as compared to HUVEC. In summary, there are distinct significant differences in the levels of inflammatory markers and adhesion molecules between HUVEC and HCAEC SAA induced dose responses that could potentially account for HCAEC greater susceptibility to inflammation and atherogenesis.
Microvascular Research | 2013
Katja Lakota; Katjusa Mrak-Poljsak; Borut Bozic; Matija Tomšič; Snezna Sodin-Semrl
BACKGROUND Serum amyloid A (SAA) has been shown to be an active participant in atherosclerosis and cardiovascular diseases. SAA-stimulated human coronary artery endothelial cells (HCAEC) were reported to release pro-inflammatory cytokines, chemokines and adhesion molecules; however it remains unclear which putative SAA receptors are present in these cells and how they act. We investigated the effects of inflammatory stimuli on the expression of SAA receptors, signaling pathways and molecular profiles in HCAEC. METHODOLOGY/PRINCIPLE FINDINGS HCAEC were cultured in vitro and stimulated with SAA (1000nM) or IL-1β (1000pg/ml). Expression of mRNA was determined by qPCR, and expression and quantification of proteins were assessed by dot array blots and ELISA, respectively. Protein phosphorylation was determined by dot blot arrays and Western blots. We report that all potential SAA receptors tested (FPR2/ALX, RAGE, TANIS, TLR2, TLR4 and CLA-1/hSR-B1) are expressed in HCAEC. Importantly, IL-1β or SAA significantly increased solely the expression of the innate immune receptor TLR2. SAA upregulated the phosphorylation of ERK1/2, NF-κB (p65, p105) and JNK, as well as expression/release of IL-6, IL-8, G-CSF, GM-CSF, ICAM-1 and VCAM-1, all potent molecules involved in neutrophil-related activities. A TLR2-dependent positive feedback mechanism of SAA expression was found. CONCLUSION/SIGNIFICANCE SAA stimulated responses in HCAEC target neutrophil rather than monocyte/macrophage activation.
PLOS ONE | 2015
Katja Lakota; Mary Carns; Sofia Podlusky; Katjusa Mrak-Poljsak; Monique Hinchcliff; Jungwha Lee; Matija Tomšič; Snezna Sodin-Semrl; John Varga
Inflammation in systemic sclerosis (SSc) is a prominent, but incompletely characterized feature in early stages of the disease. The goal of these studies was to determine the circulating levels, clinical correlates and biological effects of the acute phase protein serum amyloid A (SAA), a marker of inflammation, in patients with SSc. Circulating levels of SAA were determined by multiplex assays in serum from 129 SSc patients and 98 healthy controls. Correlations between SAA levels and clinical and laboratory features of disease were analyzed. The effects of SAA on human pulmonary fibroblasts were studied ex vivo. Elevated levels of SAA were found in 25% of SSc patients, with the highest levels in those with early-stage disease and diffuse cutaneous involvement. Significant negative correlations of SAA were found with forced vital capacity and diffusion capacity for carbon monoxide. Patients with elevated SAA had greater dyspnea and more frequent interstitial lung disease, and had worse scores on patient-reported outcome measures. Incubation with recombinant SAA induced dose-dependent stimulation of IL-6 and IL-8 in normal lung fibroblasts in culture. Serum levels of the inflammatory marker SAA are elevated in patients with early diffuse cutaneous SSc, and correlate with pulmonary involvement. In lung fibroblasts, SAA acts as a direct stimulus for increased cytokine production. These findings suggest that systemic inflammation in SSc may be linked to lung involvement and SAA could serve as a potential biomarker for this complication.
Autoimmunity Reviews | 2011
Katja Lakota; Polona Zigon; Katjusa Mrak-Poljsak; Blaz Rozman; Yehuda Shoenfeld; Snezna Sodin-Semrl
The acute phase response is a defense system in which the innate immune response is activated following injury or infection. Positive and negative acute phase proteins (APPs) are crucial for protecting the host organism, as well as returning it to homeostatic levels, the first with elevated concentrations and the latter with decreased concentrations during the acute phase. Reports about the presence of antibodies against APPs are known, however their individual, as well as potentially collective, pathological or physiological roles are still emerging. Some of these autoantibodies are specifically connected with diseases (such as pancreatic secretory trypsin inhibitor and C3, C4 nephritic factors), while others have been reported as natural antibodies. The persistent presence (even if only minor) of autoantibodies in healthy blood donors indicates an overlapping category of autoantibodies, which could become pathogenic, depending on the autoantibody characteristics such as avidity, epitope specificity, changes in the microenvironment leading to different oxidative status and others. This review uses the novel approach of studying the overall autoantibody population against APPs, their functions and connections to diseases. The primary function of autoantibodies against APPs (anti-APPs) is thought to promote their clearance, however autoantibodies against negative APPs have also been found and applying the same role to those is doubtful. There is also the theory of consumption in the stage of inflammation, which could be relevant to anti-APPs. Reports about protective roles of autoantibodies are also emerging, showing lowered levels of antibodies in diseases, which could be interesting for therapeutic intervention.
PLOS ONE | 2012
Andreja Erman; Katja Lakota; Katjusa Mrak-Poljsak; Matthew G. Blango; Veronika Krizan-Hergouth; Matthew A. Mulvey; Snezna Sodin-Semrl; Peter Veranič
Serum amyloid A (SAA) is an acute phase protein involved in the homeostasis of inflammatory responses and appears to be a vital host defense component with protective anti-infective properties. SAA expression remains poorly defined in many tissues, including the urinary tract which often faces bacterial challenge. Urinary tract infections (UTIs) are usually caused by strains of uropathogenic Escherichia coli (UPEC) and frequently occur among otherwise healthy individuals, many of whom experience bouts of recurrent and relapsing infections despite the use of antibiotics. To date, whether SAA is present in the infected urothelium and whether or not the induction of SAA can protect the host against UPEC is unclear. Here we show, using mouse models coupled with immunofluorescence microscopy and quantitative RT-PCR, that delivery of UPEC either directly into the urinary tract via catheterization or systemically via intraperitoneal injection triggers the expression of SAA. As measured by ELISA, serum levels of SAA1/2 were also transiently elevated in response to UTI, but circulating SAA3 levels were only up-regulated substantially following intraperitoneal inoculation of UPEC. In in vitro assays, physiological relevant levels of SAA1/2 did not affect the growth or viability of UPEC, but were able to block biofilm formation by the uropathogens. We suggest that SAA functions as a critical host defense against UTIs, preventing the formation of biofilms both upon and within the urothelium and possibly providing clinicians with a sensitive serological marker for UTI.
Journal of Biomedical Materials Research Part A | 2016
Ajda Flašker; Mukta Kulkarni; Katjusa Mrak-Poljsak; Ita Junkar; Saša Čučnik; Polona Žigon; Anca Mazare; Patrik Schmuki; Aleš Iglič; Snezna Sodin-Semrl
Nanoscale topography in improving vascular response in vitro was established previously on various titanium surfaces. In the present study different surface nanotopographies that is different diameters of titanium dioxide (TiO2 ) nanotubes (NTs) were fabricated by electrochemical anodization and conditioned with highly reactive gaseous oxygen plasma. The morphology of different diameter NTs was studied by scanning electron microscopy and atomic force microscopy, while changes in chemical composition on the surface before and after plasma treatment were determined by X-ray photoelectron spectroscopy. Performance of human coronary artery endothelial cells (HCAEC) on those conditioned surfaces was studied in regard to cell proliferation, released IL-6 protein and immunofluorescence microscopy (IFM). We show that HCAEC function is dependent on the diameter of the TiO2 NTs, functioning far less optimally when bound to 100 nm TiO2 NTs as compared to Ti foil, 15 nm NTs or 50 nm NTs. There were improved, morphological cell shape changes, observed with IFM, between HCAEC growing on oxygen-rich plasma-treated versus nontreated 100 nm NTs. These endothelialized conditioned Ti nanosurfaces could elucidate optimization conditions necessary for vascular implants in coronary arteries.