Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where So-ichiro Nishiyama is active.

Publication


Featured researches published by So-ichiro Nishiyama.


Journal of Immunology | 2007

Fimbrial Proteins of Porphyromonas gingivalis Mediate In Vivo Virulence and Exploit TLR2 and Complement Receptor 3 to Persist in Macrophages

Min Wang; Muhamad-Ali K. Shakhatreh; Deanna James; Shuang Liang; So-ichiro Nishiyama; Fuminobu Yoshimura; Donald R. Demuth; George Hajishengallis

Porphyromonas gingivalis is an oral/systemic pathogen implicated in chronic conditions, although the mechanism(s) whereby it resists immune defenses and persists in the host is poorly understood. The virulence of this pathogen partially depends upon expression of fimbriae comprising polymerized fimbrillin (FimA) associated with quantitatively minor proteins (FimCDE). In this study, we show that isogenic mutants lacking FimCDE are dramatically less persistent and virulent in a mouse periodontitis model and express shorter fimbriae than the wild type. Strikingly, native fimbriae allowed P. gingivalis to exploit the TLR2/complement receptor 3 pathway for intracellular entry, inhibition of IL-12p70, and persistence in macrophages. This virulence mechanism also required FimCDE; indeed, mutant strains exhibited significantly reduced ability to inhibit IL-12p70, invade, and persist intracellularly, attributable to failure to interact with complement receptor 3, although not with TLR2. These results highlight a hitherto unknown mechanism of immune evasion by P. gingivalis that is surprisingly dependent upon minor constituents of its fimbriae, and support the concept that pathogens evolved to manipulate innate immunity for promoting adaptive fitness and thus their capacity to cause disease.


Journal of Biological Chemistry | 1996

Modulation of the Thermosensing Profile of the Escherichia coli Aspartate Receptor Tar by Covalent Modification of Its Methyl-accepting Sites

Toshifumi Nara; Ikuro Kawagishi; So-ichiro Nishiyama; Michio Homma; Yasuo Imae

The Escherichia coli aspartate receptor Tar is involved in the thermotactic response. We have studied how its thermosensing function is affected by the modification of the four methyl-accepting residues (Gln295, Glu302, Gln309, and Glu491), which play essential roles in adaptation. We found that the primary translational product of tar mediates a chemoresponse, but not a thermoresponse, and that Tar comes to function as a thermoreceptor, once Gln295 or Gln309 is deamidated. This is the first identification of a thermosensing-specific mutant form, suggesting that the methylation sites of Tar constitute at least a part of the region required for thermoreception, signaling, or both. We have also investigated the inverted thermoresponse mediated by Tar in the presence of aspartate. We found that, whereas the deamidated-and-unmethylated form functions as a warm receptor, eliciting a smooth-swimming signal upon increase of temperature, the heavily methylated form functions as a cold receptor, eliciting a smooth-swimming signal upon decrease of temperature. Thus, it is suggested that Tar exists in at least three distinct states, each of which allows it to function as a warm, cold, or null thermoreceptor, depending on the modification patterns of its methylation sites.


Microbiology and Immunology | 2003

A Novel Type of Two‐Component Regulatory System Affecting Gingipains in Porphyromonas gingivalis

Yoshiaki Hasegawa; So-ichiro Nishiyama; Kiyoshi Nishikawa; Tomoko Kadowaki; Kenji Yamamoto; Toshihide Noguchi; Fuminobu Yoshimura

We surveyed the Porphyromonas gingivalis W83 genome database for homologues of FimS, the first two‐component sensor histidine kinase, which could possibly control virulence factors. Including fimS, we found six putative sensor kinase genes in the genome. The gene encoding one of the homologues was cloned from a P. gingivalis plasmid library, sequenced, and analyzed using its mutants. Two gene‐disruption mutants were created in strain ATCC 33277 by introducing a drug cassette into the gene. The mutants formed nonpigmented colonies, indicating that they might be defective in proteinase production, a characteristic of this organism. Proteinase activities, measured as arginine‐ and lysine‐specific (Rgp and Kgp gingipains, respectively) activities, of the mutants were almost half those of the parent strain. Unlike the parent and wild‐type strains, most of the gingipain activities were detected in the culture supernatant, not in cells, of the mutants. Abnormal production of gingipains was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot analyses. These results strongly suggest that this newly‐discovered two‐component sensor kinase is involved in maturation and proper localization of gingipains to the outer membrane through an unknown mechanism. The gene encoding the sensor histidine kinase was designated gppX, which represents regulation (X) of gingipains and black pigmentation in P. gingivalis.


Molecular Microbiology | 1999

Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant

So-ichiro Nishiyama; Tohru Umemura; Toshifumi Nara; Michio Homma; Ikuro Kawagishi

The aspartate chemoreceptor (Tar) of Escherichia coli also serves as a thermosensor, and it is very amenable to genetic and biochemical analysis of the thermosensing mechanism. Its thermosensing properties are controlled by reversible methylation of the cytoplasmic signalling/adaptation domain of the protein. The unmethylated and the fully methylated (aspartate‐bound) receptors sense, as attractant stimuli, increases (warm sensor) and decreases (cold sensor) in temperature respectively. To learn more about the mechanism of thermosensing, we replaced the four methyl‐accepting glutamyl residues with non‐methylatable aspartyl residues in all possible combinations. In a strain defective in both methyltransferase (CheR) and methylesterase (CheB) activities, all of the mutant Tar proteins functioned as warm sensors. To create a situation in which all of the remaining glutamyl residues were methylated, we expressed the mutant proteins in a CheB‐defective, CheR‐overproducing strain. The fully glutamyl‐methylated proteins were designed to mimic the full range of methylation states possible for wild‐type Tar. Almost all of the methylated mutant receptors, including those with single glutamyl residues, were cold sensors in the presence of aspartate. Thus, binding of aspartate to Tar and methylation of its single glutamyl residue can invert its temperature‐dependent signalling properties.


Infection and Immunity | 2009

Host adhesive activities and virulence of novel fimbrial proteins of porphyromonas gingivalis

Deanne L. Pierce; So-ichiro Nishiyama; Shuang Liang; Min Wang; Martha Triantafilou; Kathy Triantafilou; Fuminobu Yoshimura; Donald R. Demuth; George Hajishengallis

ABSTRACT The fimbriae of Porphyromonas gingivalis mediate critical roles in host colonization and evasion of innate defenses and comprise polymerized fimbrilin (FimA) associated with quantitatively minor accessory proteins (FimCDE) of unknown function. We now show that P. gingivalis fimbriae lacking FimCDE fail to interact with the CXC-chemokine receptor 4 (CXCR4), and bacteria expressing FimCDE-deficient fimbriae cannot exploit CXCR4 in vivo for promoting their persistence, as the wild-type organism does. Consistent with these loss-of-function experiments, purified FimC and FimD (but not FimE) were shown to interact with CXCR4. However, significantly stronger binding was observed when a combination of all three proteins was allowed to interact with CXCR4. In addition, FimC and FimD bound to fibronectin and type 1 collagen, whereas FimE failed to interact with these matrix proteins. These data and the fact that FimE is required for the association of FimCDE with P. gingivalis fimbriae suggest that FimE may recruit FimC and FimD into a functional complex, rather than directly binding host proteins. Consistent with this notion, FimE was shown to bind both FimC and FimD. In summary, the FimCDE components cooperate and impart critical adhesive and virulence properties to P. gingivalis fimbriae.


Advances in Experimental Medicine and Biology | 2008

Subversion of Innate Immunity by Periodontopathic Bacteria via Exploitation of Complement Receptor-3

George Hajishengallis; Min Wang; Shuang Liang; Muhamad-Ali K. Shakhatreh; Deanna James; So-ichiro Nishiyama; Fuminobu Yoshimura; Donald R. Demuth

The capacity of certain pathogens to exploit innate immune receptors enables them to undermine immune clearance and persist in their host, often causing disease. Here we review subversive interactions of Porphyromonas gingivalis, a major periodontal pathogen, with the complement receptor-3 (CR3; CD11b/CD18) in monocytes/macrophages. Through its cell surface fimbriae, P. gingivalis stimulates Toll-like receptor-2 (TLR2) inside-out signaling which induces the high-affinity conformation of CR3. Although this activates CR3-dependent monocyte adhesion and transendothelial migration, P. gingivalis has co-opted this TLR2 proadhesive pathway for CR3 binding and intracellular entry. In CR3-deficient macrophages, the internalization of P. gingivalis is reduced twofold but its ability to survive intracellularly is reduced 1,000-fold, indicating that CR3 is exploited by the pathogen as a relatively safe portal of entry. The interaction of P. gingivalis fimbriae with CR3 additionally inhibits production of bioactive (p70) interleukin-12, which mediates immune clearance. In vivo blockade of CR3 leads to reduced persistence of P. gingivalis in the mouse host and diminished ability to cause periodontal bone loss, the hallmark of periodontal disease. Strikingly, the ability of P. gingivalis to interact with and exploit CR3 depends upon quantitatively minor components (FimCDE) of its fimbrial structure, which predominantly consists of polymerized fimbrillin (FimA). Indeed, isogenic mutants lacking FimCDE but expressing FimA are dramatically less persistent and virulent than the wildtype organism both in vitro and in vivo. This model of immune evasion through CR3 exploitation by P. gingivalis supports the concept that pathogens evolved to manipulate innate immune function for promoting their adaptive fitness.


Journal of Dental Research | 2010

FimB Regulates FimA Fimbriation in Porphyromonas gingivalis

Keiji Nagano; Yoshiaki Hasegawa; Yukitaka Murakami; So-ichiro Nishiyama; Fuminobu Yoshimura

The periodontitis-associated pathogen Porphyromonas gingivalis colonizes and forms a biofilm in gingival crevices through fimbriae. It is known that the often-used strains ATCC 33277 and 381 produce long FimA fimbriae. We found a possible nonsense mutation within fimB, immediately downstream from fimA, coding a major subunit of FimA fimbriae of the strains. Indeed, P. gingivalis strains, except for ATCC 33277 and 381, universally expressed FimB, the gene product of fimB. Electron micrographs revealed that a FimB-restored strain had short and dense, “toothbrush”-like, FimA fimbriae. FimA overexpression elongated the fimbriae, whereas FimB overexpression shortened them. FimB restoration increased production of FimA and its accessory proteins. Thus, FimB regulates the length and expression of FimA fimbriae. Additionally, FimB restoration significantly reduced the release of FimA fimbriae from the cell surface, suggesting that FimB functions as an anchor of the fimbriae. The restoration enhanced adherent activity as well.


Scientific Reports | 2016

Identification of a Vibrio cholerae chemoreceptor that senses taurine and amino acids as attractants

So-ichiro Nishiyama; Yohei Takahashi; Kentaro Yamamoto; Daisuke Suzuki; Yasuaki Itoh; Kazumasa Sumita; Yumiko Uchida; Michio Homma; Katsumi Imada; Ikuro Kawagishi

Vibrio cholerae, the etiological agent of cholera, was found to be attracted by taurine (2-aminoethanesulfonic acid), a major constituent of human bile. Mlp37, the closest homolog of the previously identified amino acid chemoreceptor Mlp24, was found to mediate taxis to taurine as well as L-serine, L-alanine, L-arginine, and other amino acids. Methylation of Mlp37 was enhanced upon the addition of taurine and amino acids. Isothermal titration calorimetry demonstrated that a purified periplasmic fragment of Mlp37 binds directly to taurine, L-serine, L-alanine and L-arginine. Crystal structures of the periplamic domain of Mlp37 revealed that L-serine and taurine bind to the membrane-distal PAS domain in essentially in the same way. The structural information was supported by characterising the in vivo properties of alanine-substituted mutant forms of Mlp37. The fact that the ligand-binding domain of the L-serine complex had a small opening, which would accommodate a larger R group, accounts for the broad ligand specificity of Mlp37 and allowed us to visualise ligand binding to Mlp37 with fluorescently labelled L-serine. Taken together, we conclude that Mlp37 serves as the major chemoreceptor for taurine and various amino acids.


Journal of Bacteriology | 2010

Thermosensing Function of the Escherichia coli Redox Sensor Aer

So-ichiro Nishiyama; Shinji Ohno; Noriko Ohta; Yuichi Inoue; Hajime Fukuoka; Akihiko Ishijima; Ikuro Kawagishi

Escherichia coli chemoreceptors can sense changes in temperature for thermotaxis. Here we found that the aerotaxis transducer Aer, a homolog of chemoreceptors lacking a periplasmic domain, mediates thermoresponses. We propose that thermosensing by the chemoreceptors is a general attribute of their highly conserved cytoplasmic domain (or their less conserved transmembrane domain).


Molecular Microbiology | 2015

Hypoxia‐induced localization of chemotaxis‐related signaling proteins in Vibrio cholerae

Geetha Hiremath; Akihiro Hyakutake; Kentaro Yamamoto; Tatsuaki Ebisawa; Tomoyuki Nakamura; So-ichiro Nishiyama; Michio Homma; Ikuro Kawagishi

Vibrio cholerae has three sets of chemotaxis‐related signaling proteins, of which only System II has been shown to be involved in chemotaxis. Here, we examined localization of green fluorescent protein (GFP)‐fused components of System I. The histidine kinase (CheA1) and the adaptor (CheW0) of System I localized to polar and lateral membrane regions with standing incubation (microaerobic conditions), but their localization was lost after shaking (aerobic conditions). A transmembrane receptor of System I also showed polar and lateral localization with standing incubation. By contrast, GFP‐fused components of System II localized constitutively to the flagellated pole. Nitrogen gas, sodium azide or carbonylcyanide m‐chlorophenylhydrazone induced localization of CheA1‐GFP even with shaking incubation, suggesting that the localization is controlled in response to changes in energy metabolism. Fluorescently labeled tetracysteine‐tagged CheA1 also showed azide‐induced localization, arguing against artifactual effects of GFP fusions. These results suggest that System I components are assembled into the supramolecular signaling complex in response to reduced cellular energy states, raising the possibility that the System I complex plays a role in sensing and signaling under microaerobic environments, such as in the host intestine.

Collaboration


Dive into the So-ichiro Nishiyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Suzuki

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge