Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where So-Ryong Chae is active.

Publication


Featured researches published by So-Ryong Chae.


Water Research | 2009

Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material

Fangang Meng; So-Ryong Chae; Anja Drews; Matthias Kraume; Hang-Sik Shin; Fenglin Yang

Membrane bioreactors (MBRs) have been actively employed for municipal and industrial wastewater treatments. So far, membrane fouling and the high cost of membranes are main obstacles for wider application of MBRs. Over the past few years, considerable investigations have been performed to understand MBR fouling in detail and to develop high-flux or low-cost membranes. This review attempted to address the recent and current developments in MBRs on the basis of reported literature in order to provide more detailed information about MBRs. In this paper, the fouling behaviour, fouling factors and fouling control strategies were discussed. Recent developments in membrane materials including low-cost filters, membrane modification and dynamic membranes were also reviewed. Lastly, the future trends in membrane fouling research and membrane material development in the coming years were addressed.


Environmental Science & Technology | 2012

Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland.

Gregory V. Lowry; Benjamin Espinasse; Appala Raju Badireddy; Curtis J. Richardson; Brian C. Reinsch; Lee D. Bryant; Audrey J. Bone; Amrika Deonarine; So-Ryong Chae; Mathieu Therezien; Benjamin P. Colman; Heileen Hsu-Kim; Emily S. Bernhardt; Cole W. Matson; Mark R. Wiesner

Transformations and long-term fate of engineered nanomaterials must be measured in realistic complex natural systems to accurately assess the risks that they may pose. Here, we determine the long-term behavior of poly(vinylpyrrolidone)-coated silver nanoparticles (AgNPs) in freshwater mesocosms simulating an emergent wetland environment. AgNPs were either applied to the water column or to the terrestrial soils. The distribution of silver among water, solids, and biota, and Ag speciation in soils and sediment was determined 18 months after dosing. Most (70 wt %) of the added Ag resided in the soils and sediments, and largely remained in the compartment in which they were dosed. However, some movement between soil and sediment was observed. Movement of AgNPs from terrestrial soils to sediments was more facile than from sediments to soils, suggesting that erosion and runoff is a potential pathway for AgNPs to enter waterways. The AgNPs in terrestrial soils were transformed to Ag(2)S (~52%), whereas AgNPs in the subaquatic sediment were present as Ag(2)S (55%) and Ag-sulfhydryl compounds (27%). Despite significant sulfidation of the AgNPs, a fraction of the added Ag resided in the terrestrial plant biomass (~3 wt % for the terrestrially dosed mesocosm), and relatively high body burdens of Ag (0.5-3.3 μg Ag/g wet weight) were found in mosquito fish and chironomids in both mesocosms. Thus, Ag from the NPs remained bioavailable even after partial sulfidation and when water column total Ag concentrations are low (<0.002 mg/L).


Water Research | 2017

Fouling in membrane bioreactors: An updated review

Fangang Meng; Shaoqing Zhang; Yoontaek Oh; Zhongbo Zhou; Hang-Sik Shin; So-Ryong Chae

The goal of the current article is to update new findings in membrane fouling and emerging fouling mitigation strategies reported in recent years (post 2010) as a follow-up to our previous review published in Water Research (2009). According to a systematic review of the literature, membrane bioreactors (MBRs) are still actively investigated in the field of wastewater treatment. Notably, membrane fouling remains the most challenging issue in MBR operation and attracts considerable attention in MBR studies. In this review, we summarized the updated information on foulants composition and characteristics in MBRs, which greatly improves our understanding of fouling mechanisms. Furthermore, the emerging fouling control strategies (e.g., mechanically assisted aeration scouring, in-situ chemical cleaning, enzymatic and bacterial degradation of foulants, electrically assisted fouling mitigation, and nanomaterial-based membranes) are comprehensively reviewed. As a result, it is found that the fundamental understanding of dynamic changes in membrane foulants during a long-term operation is essential for the development and implementation of fouling control methods. Recently developed strategies for membrane fouling control denoted that the improvement of membrane performance is not our ultimate and only goal, less energy consumption and more green/sustainable fouling control ways are more promising to be developed and thus applied in the future. Overall, such a literature review not only demonstrates current challenges and research needs for scientists working in the area of MBR technologies, but also can provide more useful recommendations for industrial communities based on the related application cases.


ACS Nano | 2010

Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport.

So-Ryong Chae; Appala Raju Badireddy; Jeffrey Farner Budarz; Shihong Lin; Yao Xiao; Mathieu Therezien; Mark R. Wiesner

Properties of nanomaterial suspensions are typically summarized by average values for the purposes of characterizing these materials and interpreting experimental results. We show in this work that the heterogeneity in aqueous suspensions of fullerene C(60) aggregates (nC(60)) must be taken into account for the purposes of predicting nanomaterial transport, exposure, and biological activity. The production of reactive oxygen species (ROS), microbial inactivation, and the mobility of the aggregates of the nC(60) in a silicate porous medium all increased as suspensions were fractionated to enrich with smaller aggregates by progressive membrane filtration. These size-dependent differences are attributed to an increasing degree of hydroxylation of nC(60) aggregates with decreasing size. As the quantity and influence of these more reactive fractions may increase with time, experiments evaluating fullerene transport and toxicity end points must take into account the evolution and heterogeneity of fullerene suspensions.


Water Research | 2008

Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination.

So-Ryong Chae; Hiroshi Yamamura; Keiichi Ikeda; Yoshimasa Watanabe

Two pilot-scale hybrid water treatment systems using two different poly-vinylidene fluoride (PVDF) microfiltration (MF) membranes (i.e. symmetric and composite) were operated at a constant permeate flux of 104.2l m(-2)h(-1) (=2.5 md(-1)) with a pre-coagulation/sedimentation, sand filtration (SF), and chlorination to produce potable water from surface water. Turbidity was removed completely. And humic substances, Al, and Fe were removed very well by the pilot-scale membrane system. To control microbial growth and mitigate membrane fouling, a NaOCl solution was injected into the effluent from SF before reaching the two membranes (pre-chlorination). However, it adversely affected membrane fouling due to the oxidization and adsorption of inorganic substances such as Al, Fe, and Mn. In the next run, the NaOCl was introduced during backwash (post-chlorination). As compared with the result of pre-chlorination, this change increased the operating period of the symmetric and the composite membranes from about 10 and 50 days to about 60 and 200 days, respectively.


Water Research | 2012

Effects of humic acid and electrolytes on photocatalytic reactivity and transport of carbon nanoparticle aggregates in water

So-Ryong Chae; Yao Xiao; Shihong Lin; Tahereh Noeiaghaei; Jong-Oh Kim; Mark R. Wiesner

The effects of naturally occurring macromolecules such as humic acid (HA) and electrolytes on four fullerene nanoparticle suspensions (i.e., C(60), C(60)(OH)(24), single- and multiwall carbon nanotubes) were explored with respect to: (1) characteristics of nanoparticle aggregates, (2) transport of the aggregates through a silica porous media, and (3) production of reactive oxygen species (ROS) from the photosensitized fullerene aggregates. The presence of HA and salts increased the size of aggregates and relative hydrophobicity associated with transport through silica beads, while decreasing ROS production. These data illustrate the importance that transformation of engineered nanomaterials (ENMs) through interactions with aquatic solutes may have in altering the environmental behavior of nanomaterials.


Water Research | 2011

Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation

So-Ryong Chae; Yoshimasa Watanabe; Mark R. Wiesner

Fullerene nanomaterials are finding an increasing number of applications in energy and environmental technologies. However, substantial production and use of fullerenes will likely lead to environmental exposure with unknown consequences. In this study, aqueous suspensions of three types of fullerenes nanoparticles, C(60) fullerene, single-wall (SW) and multi-wall (MW) carbon nanotubes (CNT) were prepared by sonication and tested for reactive oxygen species (ROS) production and oxidation of benchmark organic compounds under ultraviolet (UV)-A irradiation. All three fullerenes formed colloidal aggregates in water. SWCNTs showed the highest ROS production and 2-chlorophenol degradation followed by MWCNT, and fullerene.


Journal of Colloid and Interface Science | 2010

Membrane filtration of fullerene nanoparticle suspensions: effects of derivatization, pressure, electrolyte species and concentration.

David Jassby; So-Ryong Chae; Zachary Hendren; Mark R. Wiesner

Particle aggregation is induced in derivatized fullerene (fullerol) suspensions by introducing different counter-ion species (Na(+) Ca(2+) and Mg(2+)) and concentrations. The suspensions are filtered through 20 nm ceramic membranes under different transmembrane pressures, and the removal efficiency is compared. In all cases, the average hydrodynamic radius far exceeded the average pore diameter of the membrane. In the case of mono-valent counter-ions, removal efficiency is influenced by transmembrane pressure, with higher removal efficiencies achieved at lower pressures. In contrast, removal efficiencies of fullerol suspensions destabilized with di-valent ions are insensitive to transmembrane pressure, similar to what was found in the case of non-derivatized fullerene. Scanning Electron Microscope (SEM) images of post-filtration membranes indicate that fullerol aggregates destabilized with Mg(2+) ions deform and partially penetrate the membrane, but are ultimately trapped. The proposed mechanism suggests that di-valent ions act as bridges between fullerol aggregates, forming strong bonds that were not broken under the experimental conditions. These strong bonds may allow aggregated fullerol particles to deform under high pressure, and partially penetrate the membrane. Mono-valent ions are incapable of functioning as bridges, and subsequently, when sufficient pressure is applied, fullerol aggregates will break apart and pass through the membrane.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2014

Different susceptibilities of bacterial community to silver nanoparticles in wastewater treatment systems

Emma Jeong; Wan Taek Im; Dong-Hoon Kim; Mi-Sun Kim; Seoktae Kang; Hang-Sik Shin; So-Ryong Chae

The release of silver (Ag) nanoparticles (NPs) into sewage streams has heightened concerns about potential adverse impacts on wastewater treatment processes. Here, we show that the rate constants of both biological nitrification and organic oxidation decreased exponentially with an increase in the Ag NP concentration, but nitrification was more severely inhibited than the organic oxidation even at low Ag NP concentrations (<1 mg Ag L−1) in batch experiments. The long-term exposure effects of Ag NPs on activated sludge bacteria were evaluated in sequencing batch reactors (SBRs) fed with two different substrates favoring heterotrophic and autotrophic bacteria. From a continuous operation for 50 days, it was found that heterotrophic bacteria in the organic removal process have higher tolerance to Ag NPs than do nitrifying bacteria. The effects of Ag NPs on the microbial community in both SBRs were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequences obtained from pyrosequencing. The results showed that the level of microbial susceptibility is different for each type of microorganism and that the microbial diversity decreased dramatically after continuous exposure to Ag NPs for 50 days, resulting in a decrease of wastewater treatment efficiency.


PLOS ONE | 2012

Microbial transformation of biomacromolecules in a membrane bioreactor: implications for membrane fouling investigation.

Zhongbo Zhou; Fangang Meng; So-Ryong Chae; Guocheng Huang; Wenjie Fu; Xiaoshan Jia; Shiyu Li; Guanghao Chen

Background The complex characteristics and unclear biological fate of biomacromolecules (BMM), including colloidal and soluble microbial products (SMP), extracellular polymeric substances (EPS) and membrane surface foulants (MSF), are crucial factors that limit our understanding of membrane fouling in membrane bioreactors (MBRs). Findings In this study, the microbial transformation of BMM was investigated in a lab-scale MBR by well-controlled bioassay tests. The results of experimental measurements and mathematical modeling show that SMP, EPS, and MSF had different biodegradation behaviors and kinetic models. Based on the multi-exponential G models, SMP were mainly composed of slowly biodegradable polysaccharides (PS), proteins (PN), and non-biodegradable humic substances (HS). In contrast, EPS contained a large number of readily biodegradable PN, slowly biodegradable PS and HS. MSF were dominated by slowly biodegradable PS, which had a degradation rate constant similar to that of SMP-PS, while degradation behaviors of MSF-PN and MSF-HS were much more similar to those of EPS-PN and EPS-HS, respectively. In addition, the large-molecular weight (MW) compounds (>100 kDa) in BMM were found to have a faster microbial transformation rate compared to the small-MW compounds (<5 kDa). The parallel factor (PARAFAC) modeling of three-dimensional fluorescence excitation-emission matrix (EEM) spectra showed that the tryptophan-like PN were one of the major fractions in the BMM and they were more readily biodegradable than the HS. Besides microbial mineralization, humification and hydrolysis could be viewed as two important biotransformation mechanisms of large-MW compounds during the biodegradation process. Significance The results of this work can aid in tracking the origin of membrane foulants from the perspective of the biotransformation behaviors of SMP, EPS, and MSF.

Collaboration


Dive into the So-Ryong Chae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jong-Oh Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge