Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where So-Young Oh is active.

Publication


Featured researches published by So-Young Oh.


Nature Reviews Microbiology | 2011

Architects at the bacterial surface — sortases and the assembly of pili with isopeptide bonds

Antoni P. A. Hendrickx; Jonathan M. Budzik; So-Young Oh; Olaf Schneewind

The cell wall envelope of Gram-positive bacteria can be thought of as a surface organelle for the assembly of macromolecular structures that enable the unique lifestyle of each microorganism. Sortases — enzymes that cleave the sorting signals of secreted proteins to form isopeptide (amide) bonds between the secreted proteins and peptidoglycan or polypeptides — function as the principal architects of the bacterial surface. Acting alone or with other sortase enzymes, sortase construction leads to the anchoring of surface proteins at specific sites in the envelope or to the assembly of pili, which are fibrous structures formed from many protein subunits. The catalysis of intermolecular isopeptide bonds between pilin subunits is intertwined with the assembly of intramolecular isopeptide bonds within pilin subunits. Together, these isopeptide bonds endow these sortase products with adhesive properties and resistance to host proteases.


Journal of Bacteriology | 2007

The Zinc-Responsive Regulator Zur Controls a Zinc Uptake System and Some Ribosomal Proteins in Streptomyces coelicolor A3(2)

Jung-Ho Shin; So-Young Oh; Soon-Jong Kim; Jung-Hye Roe

In various bacteria, Zur, a zinc-specific regulator of the Fur family, regulates genes for zinc transport systems to maintain zinc homeostasis. It has also been suggested that Zur controls zinc mobilization by regulating some ribosomal proteins. The antibiotic-producing soil bacterium Streptomyces coelicolor contains four genes for Fur family regulators, and one (named zur) is located downstream of the znuACB operon encoding a putative zinc uptake transporter. We found that zinc specifically repressed the level of znuA transcripts and that this level was derepressed in a Delta zur mutant. Purified Zur existing as homodimers bound to the znuA promoter region in the presence of zinc, confirming the role of Zur as a zinc-responsive repressor. We analyzed transcripts for paralogous forms of ribosomal proteins L31 (RpmE1 and RpmE2) and L33 (RpmG2 and RpmG3) for their dependence on Zur and found that RpmE2 and RpmG2 with no zinc-binding motif of conserved cysteines (Cs) were negatively regulated by Zur. C-negative RpmG3 and C-positive RpmE1 were not regulated by Zur. Instead, they were regulated by the sigma factor sigma(R) as predicted from their promoter sequences. The rpmE1 and rpmG3 genes were partially induced by EDTA in a manner dependent on sigma(R), suggesting that zinc depletion may stimulate the sigma(R) regulatory system. This finding reflects a link between thiol-oxidizing stress and zinc depletion. We determined the Zur-binding sites within znuA and rpmG2 promoter regions by footprinting analyses and identified a consensus inverted repeat sequence (TGaaAatgatTttCA, where uppercase letters represent the nucleotides common to all sites analyzed). This sequence closely matches that for mycobacterial Zur and allows the prediction of more genes in the Zur regulon.


Journal of Bacteriology | 2002

Role of OxyR as a Peroxide-Sensing Positive Regulator in Streptomyces coelicolor A3(2)

Ji-Sook Hahn; So-Young Oh; Jung-Hye Roe

Genes encoding a homolog of Escherichia coli OxyR (oxyR) and an alkyl hydroperoxide reductase system (ahpC and ahpD) have been isolated from Streptomyces coelicolor A3(2). The ahpC and ahpD genes constitute an operon transcribed divergently from the oxyR gene. Expression of both ahpCD and oxyR genes was maximal at early exponential phase and decreased rapidly as cells entered mid-exponential phase. Overproduction of OxyR in Streptomyces lividans conferred resistance against cumene hydroperoxide and H2O2. The oxyR mutant produced fewer ahpCD and oxyR transcripts than the wild type, suggesting that OxyR acts as a positive regulator for their expression. Both oxyR and ahpCD transcripts increased more than fivefold within 10 min of H2O2 treatment and decreased to the normal level in 50 min, with kinetics similar to those of the CatR-mediated induction of the catalase A gene (catA) by H2O2. The oxyR mutant failed to induce oxyR and ahpCD genes in response to H2O2, indicating that OxyR is the modulator for the H2O2-dependent induction of these genes. Purified OxyR protein bound specifically to the intergenic region between ahpC and oxyR, suggesting its direct role in regulating these genes. These results demonstrate that in S. coelicolor OxyR mediates H2O2 induction of its own gene and genes for alkyl hydroperoxide reductase system, but not the catalase gene (catA), unlike in Escherichia coli and Salmonella enterica serovar Typhimurium.


Journal of Bacteriology | 2007

Dual Role of OhrR as a Repressor and an Activator in Response to Organic Hydroperoxides in Streptomyces coelicolor

So-Young Oh; Jung-Ho Shin; Jung-Hye Roe

Organic hydroperoxide resistance in bacteria is achieved primarily through reducing oxidized membrane lipids. The soil-inhabiting aerobic bacterium Streptomyces coelicolor contains three paralogous genes for organic hydroperoxide resistance: ohrA, ohrB, and ohrC. The ohrA gene is transcribed divergently from ohrR, which encodes a putative regulator of MarR family. Both the ohrA and ohrR genes were induced highly by various organic hydroperoxides. The ohrA gene was induced through removal of repression by OhrR, whereas the ohrR gene was induced through activation by OhrR. Reduced OhrR bound to the ohrA-ohrR intergenic region, which contains a central (primary) and two adjacent (secondary) inverted-repeat motifs that overlap with promoter elements. Organic peroxide decreased the binding affinity of OhrR for the primary site, with a concomitant decrease in cooperative binding to the adjacent secondary sites. The single cysteine C28 in OhrR was involved in sensing oxidants, as determined by substitution mutagenesis. The C28S mutant of OhrR bound to the intergenic region without any change in binding affinity in response to organic peroxides. These results lead us to propose a model for the dual action of OhrR as a repressor and an activator in S. coelicolor. Under reduced conditions, OhrR binds cooperatively to the intergenic region, repressing transcription from both genes. Upon oxidation, the binding affinity of OhrR decreases, with a concomitant loss of cooperative binding, which allows RNA polymerase to bind to both the ohrA and ohrR promoters. The loosely bound oxidized OhrR can further activate transcription from the ohrR promoter.


Molecular Microbiology | 2011

Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthrax-like disease.

So-Young Oh; Jonathan M. Budzik; Gabriella Garufi; Olaf Schneewind

Bacillus cereus G9241 causes an anthrax‐like respiratory illness in humans; however, the molecular mechanisms of disease pathogenesis are not known. Genome sequencing identified two putative virulence plasmids proposed to provide for anthrax toxin (pBCXO1) and/or capsule expression (pBC218). We report here that B. cereus G9241 causes anthrax‐like disease in immune‐competent mice, which is dependent on each of the two virulence plasmids. pBCXO1 encodes pagA1, the homologue of anthrax protective antigen, as well as hasACB, providing for hyaluronic acid capsule formation, two traits that each contribute to disease pathogenesis. pBC218 harbours bpsX‐H, B. cereus exo‐polysaccharide, which produce a second capsule. During infection, B. cereus G9241 elaborates both hasACB and bpsX‐H capsules, which together are essential for the establishment of anthrax‐like disease and the resistance of bacilli to phagocytosis. A single nucleotide deletion causes premature termination of hasA translation in Bacillus anthracis, which is known to escape phagocytic killing by its pXO2 encoded poly‐d‐γ‐glutamic acid (PDGA) capsule. Thus, multiple different gene clusters endow pathogenic bacilli with capsular material, provide for escape from innate host immune responses and aid in establishing the pathogenesis of anthrax‐like disease.


Journal of Bacteriology | 2000

Regulation of the furA and catC operon, encoding a ferric uptake regulator homologue and catalase-peroxidase, respectively, in Streptomyces coelicolor A3(2).

Ji-Sook Hahn; So-Young Oh; Jung-Hye Roe

We isolated the catC gene, encoding catalase-peroxidase in Streptomyces coelicolor, using sequence homology with the katG gene from Escherichia coli. Upstream of the catC gene, an open reading frame (furA) encoding a homologue of ferric uptake regulator (Fur) was identified. S1 mapping analysis indicated that the furA gene was cotranscribed with the catC gene. The transcriptional start site of the furA-catC mRNA was mapped to the translation start codon ATG of the furA gene. The putative promoter contains consensus -10 and -35 elements similar to those recognized by sigma(HrdB), the major sigma factor of S. coelicolor. The transcripts were produced maximally at late-exponential phase and decreased at the stationary phase in liquid culture. The change in the amount of mRNA was consistent with that of CatC protein and enzyme activity. When the furA gene was introduced into S. lividans on a multicopy plasmid, the increased production of catC transcripts and protein product at late growth phase was inhibited, implying a role for FurA as the negative regulator of the furA-catC operon. FurA protein bound to its own promoter region between -59 and -39 nucleotides from the transcription start site. The binding affinity of FurA increased under reducing conditions and in the presence of metals such as Ni(2+), Mn(2+), Zn(2+), or Fe(2+). Addition of these metals to the growth medium decreased the production of CatC protein, consistent with the role of FurA as a metal-dependent repressor.


Journal of Biological Chemistry | 2008

Cell Wall Anchor Structure of BcpA Pili in Bacillus anthracis

Jonathan M. Budzik; So-Young Oh; Olaf Schneewind

Assembly of pili in Gram-positive bacteria and their attachment to the cell wall envelope are mediated by sortases. In Bacillus cereus and its close relative Bacillus anthracis, the major pilin protein BcpA is cleaved between the threonine and the glycine of its C-terminal LPXTG motif sorting signal by the pilin-specific sortase D. The resulting acyl enzyme intermediate is relieved by the nucleophilic attack of the side-chain amino group of lysine within the YPKN motif of another BcpA subunit. Cell wall anchoring of assembled BcpA pili requires sortase A, which also cleaves the LPXTG sorting signal of BcpA between its threonine and glycine residues. We show here that sortases A and D require only the C-terminal sorting signal of BcpA for substrate cleavage. Unlike sortase D, which accepts the YPKN motif as a nucleophile, sortase A forms an amide bond between the BcpA C-terminal carboxyl group of threonine and the side-chain amino group of diaminopimelic acid within the cell wall peptidoglycan of bacilli. These results represent the first demonstration of a cell wall anchor structure for pili, which are deposited by sortase A into the envelope of many different microbes.


Journal of Biological Chemistry | 2009

Sortase D Forms the Covalent Bond That Links BcpB to the Tip of Bacillus cereus Pili

Jonathan M. Budzik; So-Young Oh; Olaf Schneewind

Bacillus cereus and other Gram-positive bacteria elaborate pili via a sortase D-catalyzed transpeptidation mechanism from major and minor pilin precursor substrates. After cleavage of the LPXTG sorting signal of the major pilin, BcpA, sortase D forms an amide bond between the C-terminal threonine and the amino group of lysine within the YPKN motif of another BcpA subunit. Pilus assembly terminates upon sortase A cleavage of the BcpA sorting signal, resulting in a covalent bond between BcpA and the cell wall cross-bridge. Here, we show that the IPNTG sorting signal of BcpB, the minor pilin, is cleaved by sortase D but not by sortase A. The C-terminal threonine of BcpB is amide-linked to the YPKN motif of BcpA, thereby positioning BcpB at the tip of pili. Thus, unique attributes of the sorting signals of minor pilins provide Gram-positive bacteria with a universal mechanism ordering assembly of pili.


Proceedings of the National Academy of Sciences of the United States of America | 2011

CD4+CD25+Foxp3+ regulatory T cell formation requires more specific recognition of a self-peptide than thymocyte deletion

Cristina Cozzo Picca; Donald M. Simons; So-Young Oh; Malinda Aitken; Olivia Perng; Christina Mergenthaler; Elizabeth Kropf; Jan Erikson; Andrew J. Caton

CD4+CD25+Foxp3+ regulatory T (Treg) cells are generated during thymocyte development and play a crucial role in preventing the immune system from attacking the bodys cells and tissues. However, how the formation of these cells is directed by T-cell receptor (TCR) recognition of self-peptide:major histocompatibility complex (MHC) ligands remains poorly understood. We show that an agonist self-peptide with which a TCR is strongly reactive can induce a combination of thymocyte deletion and CD4+CD25+Foxp3+ Treg cell formation in vivo. A weakly cross-reactive partial agonist self-peptide could similarly induce thymocyte deletion, but failed to induce Treg cell formation. These studies indicate that CD4+CD25+Foxp3+ Treg cell formation can require highly stringent recognition of an agonist self-peptide by developing thymocytes. They also refine the “avidity” model of thymocyte selection by demonstrating that the quality of the signal mediated by agonist self-peptides, rather than the overall intensity of TCR signaling, can be a critical factor in directing autoreactive thymocytes to undergo CD4+CD25+Foxp3+ Treg cell formation and/or deletion during their development.


Journal of Bacteriology | 2012

Secretion Genes as Determinants of Bacillus anthracis Chain Length

Sao-Mai Nguyen-Mau; So-Young Oh; Valerie J. Kern; Dominique Missiakas; Olaf Schneewind

Bacillus anthracis grows in chains of rod-shaped cells, a trait that contributes to its escape from phagocytic clearance in host tissues. Using a genetic approach to search for determinants of B. anthracis chain length, we identified mutants with insertional lesions in secA2. All isolated secA2 mutants exhibited an exaggerated chain length, whereas the dimensions of individual cells were not changed. Complementation studies revealed that slaP (S-layer assembly protein), a gene immediately downstream of secA2 on the B. anthracis chromosome, is also a determinant of chain length. Both secA2 and slaP are required for the efficient secretion of Sap and EA1 (Eag), the two S-layer proteins of B. anthracis, but not for the secretion of S-layer-associated proteins or of other secreted products. S-layer assembly via secA2 and slaP contributes to the proper positioning of BslO, the S-layer-associated protein, and murein hydrolase, which cleaves septal peptidoglycan to separate chains of bacilli. SlaP was found to be both soluble in the bacterial cytoplasm and associated with the membrane. The purification of soluble SlaP from B. anthracis-cleared lysates did not reveal a specific ligand, and the membrane association of SlaP was not dependent on SecA2, Sap, or EA1. We propose that SecA2 and SlaP promote the efficient secretion of S-layer proteins by modifying the general secretory pathway of B. anthracis to transport large amounts of Sap and EA1.

Collaboration


Dive into the So-Young Oh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jung-Hye Roe

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge