Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where nan Sodmergen is active.

Publication


Featured researches published by nan Sodmergen.


Plant and Cell Physiology | 2009

Arrested differentiation of proplastids into chloroplasts in variegated leaves characterized by plastid ultrastructure and nucleoid morphology

Wataru Sakamoto; Yasuyuki Uno; Quan Zhang; Eiko Miura; Yusuke Kato; Sodmergen

Leaf variegation is seen in many ornamental plants and is often caused by a cell-lineage type formation of white sectors lacking functional chloroplasts. A mutant showing such leaf variegation is viable and is therefore suitable for studying chloroplast development. In this study, the formation of white sectors was temporally investigated in the Arabidopsis leaf-variegated mutant var2. Green sectors were found to emerge from white sectors after the formation of the first true leaf. Transmission electron microscopic examination of plastid ultrastructures confirmed that the peripheral zone in the var2 shoot meristem contained proplastids but lacked developing chloroplasts that were normally detected in wild type. These data suggest that chloroplast development proceeds very slowly in var2 variegated leaves. A notable feature in var2 is that the plastids in white sectors contain remarkable globular vacuolated membranes and prolamellar body-like structures. Although defective plastids were hardly observed in shoot meristems, they began to accumulate during early leaf development. Consistent with these observations, large plastid nucleoids detected in white sectors by DNA-specific fluorescent dyes were characteristic of those found in proplastids and were clearly distinguished from those in chloroplasts. These results strongly imply that in white sectors, differentiation of plastids into chloroplasts is arrested at the early stage of thylakoid development. Interestingly, large plastid nucleoids were detected in variegated sectors from species other than Arabidopsis. Thus, plastids in variegated leaves appear to share a common feature and represent a novel plastid type.


Plant and Cell Physiology | 2008

Mitochondrial Dynamics in Plant Male Gametophyte Visualized by Fluorescent Live Imaging

Ryo Matsushima; Yuuki Hamamura; Tetsuya Higashiyama; Shin-ichi Arimura; Sodmergen; Nobuhiro Tsutsumi; Wataru Sakamoto

Visualization of organelles in living cells is a powerful method for studying their dynamic behavior. Here we attempted to visualize mitochondria in angiosperm male gametophyte (pollen grain from Arabidopsis thaliana) that are composed of one vegetative cell (VC) and two sperm cells (SCs). Combination of mitochondria-targeted fluorescent proteins with VC- or SC-specific expression allowed us to observe the precise number and dynamic behavior of mitochondria in the respective cell types. Furthermore, live imaging of SC mitochondria during double fertilization confirmed previous observations, demonstrated by electron microscopy in other species, that sperm mitochondria enter into the egg and central cells. We also attempted to visualize mutant mitochondria that were elongated due to a defect in mitochondrial division. This mutant phenotype was indeed detectable in VC mitochondria of a heterozygous F(1) plant, suggesting active mitochondrial division in male gametophyte. Finally, we performed mutant screening and isolated a putative mitochondrial protein transport mutant whose phenotype was detectable only in haploid cells. The transgenic materials presented in this work are useful not only for live imaging but also for studying mitochondrial functions by mutant analysis.


The Plant Cell | 2010

The FtsH protease heterocomplex in Arabidopsis: dispensability of type-B protease activity for proper chloroplast development.

Di Zhang; Yusuke Kato; Masaru Fujimoto; Nobuhiro Tsutsumi; Sodmergen; Wataru Sakamoto

Chloroplast development requires protein quality control in which the ATP-dependent protease FtsH plays a versatile role. This study finds that FtsH, composed of a heterocomplex by Type A and Type B isomers in the thylakoid membrane, can function without the protease activity provided by Type B isomers, implying that it has more protease sites than are needed for proper chloroplast development. FtsH is an ATP-dependent metalloprotease present as a hexameric heterocomplex in thylakoid membranes. Encoded in the Arabidopsis thaliana YELLOW VARIEGATED2 (VAR2) locus, FtsH2 is one isoform among major Type A (FtsH1/5) and Type B (FtsH2/8) isomers. Mutants lacking FtsH2 (var2) and FtsH5 (var1) are characterized by a typical leaf-variegated phenotype. The functional importance of the catalytic center (comprised by the zinc binding domain) in FtsH2 was assessed in this study by generating transgenic plants that ectopically expressed FtsH2(488), a proteolytically inactive version of FtsH2. The resulting amino acid substitution inhibited FtsH protease activity in vivo when introduced into Escherichia coli FtsH. By contrast, expression of FtsH2(488) rescued not only leaf variegation in var2 but also seedling lethality in var2 ftsh8, suggesting that the protease activity of Type B isomers is completely dispensable, which implies that the chloroplastic FtsH complex has protease sites in excess and that they act redundantly rather than coordinately. However, expression of FtsH2(488) did not fully rescue leaf variegation in var1 var2 because the overall FtsH levels were reduced under this background. Applying an inducible promoter to our complementation analysis revealed that rescue of leaf variegation indeed depends on the overall amount of FtsH. Our results elucidate protein activity and its amount as important factors for the function of FtsH heterocomplexes that are composed of multiple isoforms in the thylakoid membrane.


Journal of Plant Research | 2010

Why does biparental plastid inheritance revive in angiosperms

Quan Zhang; Sodmergen

It is widely believed that plastid and mitochondrial genomes are inherited through the maternal parent. In plants, however, paternal transmission of these genomes is frequently observed, especially for the plastid genome. A male gametic trait, called potential biparental plastid inheritance (PBPI), occurs in up to 20% of angiosperm genera, implying a strong tendency for plastid transmission from the male lineage. Why do plants receive organelles from the male parents? Are there clues in plastids that will help to elucidate the evolution of plants? Reconstruction of the ancestral state of plastid inheritance patterns in a phylogenetic context provides insights into these questions. In particular, a recent report demonstrated the unilateral occurrence of PBPI in angiosperms. This result implies that nuclear cytoplasmic conflicts, a basic driving force for altering the mode of organelle inheritance, might have arisen specifically in angiosperms. Based on existing evidence, it is likely that biparental inheritance may have occurred to rescue angiosperm species with defective plastids.


Planta | 2002

Reduction in amounts of mitochondrial DNA in the sperm cells as a mechanism for maternal inheritance in Hordeum vulgare.

Sodmergen; Quan Zhang; Yingtao Zhang; Wataru Sakamoto; Tsuneyoshi Kuroiwa

Abstract. It is known that extranuclear organelle DNA is inherited maternally in the majority of angiosperms. The mechanisms for maternal inheritance have been well studied in plastids but not in mitochondria. In the present study we examined the mitochondrial DNA in the male reproductive cells of Hordeum vulgare L. by immunoelectron microscopy. Our results show that the number of anti-DNA gold particles on sections of sperm cell mitochondria decreased by 97% during pollen development. The reduction occurred rapidly in the generative cells and subsequently in the sperm cells, concomitant with a remarkable reduction in mitochondrial volume. It seems that the copy numbers of mitochondrial DNA were reduced in the male reproductive cells, which may be a possible mechanism by which paternal transmission is inhibited. Unlike mitochondria, plastids are excluded from the generative cells during the first pollen mitosis. These data suggest a mechanism for maternal inheritance of mitochondria in angiosperms and for independent control of inheritance of mitochondria and plastids in H. vulgare.


Plant and Cell Physiology | 2008

Occurrence of plastids in the sperm cells of Caprifoliaceae: biparental plastid inheritance in angiosperms is unilaterally derived from maternal inheritance.

Yingchun Hu; Quan Zhang; Guangyuan Rao; Sodmergen

It is widely held that organelles inherit from the maternal lineage. However, the plastid genome in quite a few angiosperms appears to be biparentally transmitted. It is unclear how and why biparental inheritance of the genome became activated. Here, we detected widespread occurrence of plastids in the sperm cells (a cellular prerequisite for biparental inheritance) of traditional Caprifoliaceae. Of the 12 genera sampled, the sperm cells of Abelia, Dipelta, Heptacodium, Kolkwitzia, Leycesteria, Linnaea, Lonicera, Symphoricarpos, Triosteum and Weigela possessed inheritable plastids. The other genera, Sambucus and Viburnum, lacked plastids in sperm cells. Interestingly, such exclusion of plastids in the sperm cells of some Caprifoliaceae appeared to be associated with the divergence of Dipsacales phylogeny. Closer examination of Weigela florida revealed that both plastids and plastid DNA were highly duplicated in the generative cells. This implies that the appearance of plastids in sperm cells involved cellular mechanisms. Because such mechanisms must enhance the strength of plastid transmission through the paternal lineage and appear ubiquitous in species exhibiting biparental or potential biparental plastid inheritance, we presume that biparental plastid genetics may be a derived trait in angiosperms. This is consistent with our extended phylogenetic analysis using species with recently discovered modes of potential plastid inheritance. The results show that basal and early angiosperms have maternal plastid transmission, whereas all potential biparental transmission occurs at terminal branches of the tree. Thus, unlike previous studies, we suggest that biparental plastid inheritance in angiosperms was unilaterally converted from the maternal transmission mode during late angiosperm evolution.


Plant Physiology | 2004

Divergent Potentials for Cytoplasmic Inheritance within the Genus Syringa. A New Trait Associated with Speciogenesis

Yang Liu; Hongxia Cui; Quan Zhang; Sodmergen

Epifluorescence microscopic detection of organelle DNA in the mature generative cell is a rapid method for determining the potential for the mode of cytoplasmic inheritance. We used this method to examine 19 of the known 22 to 27 species in the genus Syringa. Organelle DNA was undetectable in seven species, all in the subgenus Syringa, but was detected in the 12 species examined of the subgenera Syringa and Ligustrina. Therefore, species within the genus Syringa display differences in the potential cytoplasmic inheritance. Closer examination revealed that the mature generative cells of the species in which organelle DNA was detected contained both mitochondria and plastids, but cells of the species lacking detectable organelle DNA contained only mitochondria, and the epifluorescent organelle DNA signals from the mature generative cells corresponded to plastid DNA. In addition, semiquantitative analysis was used to demonstrate that, during pollen development, the amount of mitochondrial DNA decreased greatly in the generative cells of the species examined, but the amount of plastid DNA increased remarkably in the species containing plastids in the generative cell. The results suggest that all Syringa species exhibit potential maternal mitochondrial inheritance, and a number of the species exhibit potential biparental plastid inheritance. The difference between the modes of potential plastid inheritance among the species suggests different phylogenies for the species; it also supports recent conclusions of molecular, systematic studies of the Syringa. In addition, the results provide new evidence for the mechanisms of maternal mitochondrial inheritance in angiosperms.


Plant Physiology | 2004

Heterogeneous Pollen in Chlorophytum comosum, a Species with a Unique Mode of Plastid Inheritance Intermediate between the Maternal and Biparental Modes

Yang Liu; Quan Zhang; Yufei Hu; Sodmergen

The majority of angiosperms display maternal plastid inheritance. The cytological mechanisms of this mode of inheritance have been well studied, but little is known about its genetic relationship to biparental inheritance. The angiosperm Chlorophytum comosum is unusual in that different pollen grains show traits of different modes of plastid inheritance. About 50% of these pollen grains exhibit the potential for biparental plastid inheritance, whereas the rest exhibit maternal plastid inheritance. There is no morphological difference between these two types of pollen. Pollen grains from different individuals of C. comosum all exhibited this variability. Closer examination revealed that plastid polarization occurs, with plastids being excluded from the generative cell during the first pollen mitosis. However, the exclusion is incomplete in 50% of the pollen grains, and the few plastids distributed to the generative cells divide actively after mitosis. Immunoelectron microscopy using an anti-DNA antibody demonstrated that the plastids contain a large amount of DNA. As there is a considerable discrepancy between the exclusion and duplication of plastids, resulting in plastids with opposite fates occurring simultaneously in C. comosum, we propose that the species is a transitional type with a mode of plastid inheritance that is genetically intermediate between the maternal and biparental modes.


The Plant Cell | 2018

Expression of the Nitrate Transporter Gene OsNRT1.1A/OsNPF6.3 Confers High Yield and Early Maturation in Rice

Wei Wang; Bin Hu; Dingyang Yuan; Yongqiang Liu; Ronghui Che; Yingchun Hu; Shujun Ou; Yongxin Liu; Zhihua Zhang; Hongru Wang; Hua Li; Zhimin Jiang; Zhengli Zhang; Xiaokai Gao; Yahong Qiu; Xiangbing Meng; Yang Bai; Yan Liang; Yiqin Wang; Lianhe Zhang; Li L; Sodmergen; Haichun Jing; Jiayang Li; Chengcai Chu

OsNRT1.1A displays functional divergence with previously reported NRT1.1s in plants and holds great potential in promoting both high yield and early maturation in rice. Nitrogen (N) is a major driving force for crop yield improvement, but application of high levels of N delays flowering, prolonging maturation and thus increasing the risk of yield losses. Therefore, traits that enable utilization of high levels of N without delaying maturation will be highly desirable for crop breeding. Here, we show that OsNRT1.1A (OsNPF6.3), a member of the rice (Oryza sativa) nitrate transporter 1/peptide transporter family, is involved in regulating N utilization and flowering, providing a target to produce high yield and early maturation simultaneously. OsNRT.1A has functionally diverged from previously reported NRT1.1 genes in plants and functions in upregulating the expression of N utilization-related genes not only for nitrate but also for ammonium, as well as flowering-related genes. Relative to the wild type, osnrt1.1a mutants exhibited reduced N utilization and late flowering. By contrast, overexpression of OsNRT1.1A in rice greatly improved N utilization and grain yield, and maturation time was also significantly shortened. These effects were further confirmed in different rice backgrounds and also in Arabidopsis thaliana. Our study paves a path for the use of a single gene to dramatically increase yield and shorten maturation time for crops, outcomes that promise to substantially increase world food security.


Journal of Experimental Botany | 2018

Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice

Jin Ma; Jun Chen; Min Wang; Yulong Ren; Shuai Wang; Cailin Lei; Zhijun Cheng; Sodmergen

Rice exocyst subunit OsSEC3A interacts with OsSNAP32, a SNAP25-type SNARE protein, and disruption of OsSEC3A causes a lesion-mimic phenotype and enhanced defense response

Collaboration


Dive into the nan Sodmergen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin-Jiang Li

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge