Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sofi Eriksson is active.

Publication


Featured researches published by Sofi Eriksson.


Free Radical Biology and Medicine | 2009

High levels of thioredoxin reductase 1 modulate drug-specific cytotoxic efficacy.

Sofi Eriksson; Stefanie Prast-Nielsen; Emilie Flaberg; Laszlo Szekely; Elias S.J. Arnér

The selenoprotein thioredoxin reductase 1 (TrxR1) is currently recognized as a plausible anticancer drug target. Here we analyzed the effects of TrxR1 targeting in the human A549 lung carcinoma cell line, having a very high basal TrxR1 expression. We determined the total cellular TrxR activity to be 271.4 +/- 39.5 nmol min(-1) per milligram of total protein, which by far exceeded the total thioredoxin activity (39.2 +/- 3.5 nmol min(-1) per milligram of total protein). Knocking down TrxR1 by approx 90% using siRNA gave only a slight effect on cell growth, irrespective of concurrent glutathione depletion (> or = 98% decrease), and no increase in cell death or distorted cell cycle phase distributions. This apparent lack of phenotype could probably be explained by Trx functions being maintained by the remaining TrxR1 activity. TrxR1 knockdown nonetheless yielded drug-specific modulation of cytotoxic efficacy in response to various chemotherapeutic agents. No changes in response upon exposure to auranofin or juglone were seen after TrxR1 knockdown, whereas sensitivity to 1-chloro-2,4-dinitrobenzene or menadione became markedly increased. In contrast, a virtually complete resistance to cisplatin using concentrations up to 20 microM appeared upon TrxR1 knockdown. The results suggest that high overexpression of TrxR has an impact not necessarily linked to Trx function that nonetheless modulates drug-specific cytotoxic responses.


Journal of the National Cancer Institute | 2009

Cisplatin and Oxaliplatin Toxicity: Importance of Cochlear Kinetics as a Determinant for Ototoxicity

Victoria Hellberg; Inger Wallin; Sofi Eriksson; Emma Hernlund; Elin Jerremalm; Maria Berndtsson; Staffan Eksborg; Elias S.J. Arnér; Maria C. Shoshan; Hans Ehrsson; Göran Laurell

Background Cisplatin is a cornerstone anticancer drug with pronounced ototoxicity, whereas oxaliplatin, a platinum derivative with a different clinical profile, is rarely ototoxic. This difference has not been explained. Methods In HCT116 cells, cisplatin (20 μM)-induced apoptosis was reduced by a calcium chelator from 9.9-fold induction (95% confidence interval [CI] = 8.1- to 11.7-fold), to 3.1-fold induction (95% CI = 2.0- to 4.2-fold) and by superoxide scavenging from 9.3-fold (95% CI = 8.8- to 9.8-fold), to 5.1-fold (95% CI = 4.4- to 5.8-fold). A guinea pig model (n = 23) was used to examine pharmacokinetics. Drug concentrations were determined by liquid chromatography with post-column derivatization. The total platinum concentration in cochlear tissue was determined by inductively coupled plasma mass spectrometry. Drug pharmacokinetics was assessed by determining the area under the concentration–time curve (AUC). Statistical tests were two-sided. Results In HCT116 cells, cisplatin (20 μM)-induced apoptosis was reduced by a calcium chelator from 9.9-fold induction (95% confidence interval [CI] = 8.1- to 11.7-fold to 3.1-fold induction) (95% CI = 2.0- to 4.2-fold) and by superoxide scavenging (from 9.3-fold, 95% CI = 8.8- to 9.8-fold, to 5.1-fold, 95% CI = 4.4- to 5.8-fold). Oxaliplatin (20 μM)-induced apoptosis was unaffected by calcium chelation (from 7.1- to 6.2-fold induction) and by superoxide scavenging (from 5.9- to 5.6-fold induction). In guinea pig cochlea, total platinum concentration (0.12 vs 0.63 μg/kg, respectively, P = .008) and perilymphatic drug concentrations (238 vs 515 μM × minute, respectively, P < .001) were lower after intravenous oxaliplatin treatment (16.6 mg/kg) than after equimolar cisplatin treatment (12.5 mg/kg). However, after a non-ototoxic cisplatin dose (5 mg/kg) or the same oxaliplatin dose (16.6 mg/kg), the AUC for perilymphatic concentrations was similar, indicating that the two drugs have different cochlear pharmacokinetics. Conclusion Cisplatin- but not oxaliplatin-induced apoptosis involved superoxide-related pathways. Lower cochlear uptake of oxaliplatin than cisplatin appears to be a major explanation for its lower ototoxicity.


Cell Cycle | 2009

p53-dependent inhibition of TrxR1 contributes to the tumor-specific induction of apoptosis by RITA

Elisabeth Hedström; Sofi Eriksson; Joanna Zawacka-Pankau; Elias S.J. Arnér; Galina Selivanova

Thioredoxin reductase 1 (TrxR1) is a key regulator in many redox-dependent cellular pathways, and is often overexpressed in cancer. Several studies have identified TrxR1 as a potentially important target for anticancer therapy. The low molecular weight compound RITA (NSC 652287) binds p53 and induces p53-dependent apoptosis. Here we found that RITA also targets TrxR1 by non-covalent binding, followed by inhibition of its activity in vitro and by inhibition of TrxR activity in cancer cells. Interestingly, a novel ~130 kDa form of TrxR1, presumably representing a stable covalently linked dimer, and an increased generation of reactive oxygen species (ROS) were induced by RITA in cancer cells in a p53-dependent manner. Similarly, the gold-based TrxR inhibitor auranofin induced apoptosis related to oxidative stress, but independently of p53 and without apparent induction of the ~130 kDa form of TrxR1. In contrast to the effects observed in cancer cells, RITA had no impact on TrxR or ROS formation in normal fibroblasts (NHDF). The inhibition of TrxR1 can sensitize tumor cells to agents that induce oxidative stress and may directly trigger cell death. Thus, our results suggest that a unique p53-dependent effect of RITA on TrxR1 in cancer cells might synergize with p53-dependent induction of pro-apoptotic genes and oxidative stress, thereby leading to a robust induction of cancer cell death, without affecting non-transformed cells.


Free Radical Biology and Medicine | 2008

Mitochondrial peroxiredoxin 3 is rapidly oxidized in cells treated with isothiocyanates.

Kristin K. Brown; Sofi Eriksson; Elias S.J. Arnér; Mark B. Hampton

Isothiocyanates are phytochemicals with anti-cancer properties that include the ability to trigger apoptosis. A substantial body of evidence suggests that reaction of the electrophilic isothiocyanate moiety with cysteine residues in cellular proteins and glutathione accounts for their biological activity. In this study we investigated the effect of several different isothiocyanates on the redox states of the cysteine-dependent peroxiredoxins (Prx) in Jurkat T lymphoma cells, and compared this to known effects on the selenoprotein thioredoxin reductase, glutathione reductase and intracellular GSH levels. Interestingly, oxidation of mitochondrial Prx3 could be detected as early as 5 min after exposure of cells to phenethyl isothiocyanate, with complete oxidation occurring at doses that only had small inhibitory effects on total cellular thioredoxin reductase and glutathione reductase activities. Peroxiredoxin oxidation was specific to the mitochondrial isoform with cytoplasmic Prx1 and Prx2 maintained in their reduced forms at all analyzed time points and concentrations of isothiocyanate. Phenethyl isothiocyanate could react with purified Prx3 directly, but it did not oxidize Prx3 or promote its oxidation by hydrogen peroxide. A selection of aromatic and alkyl isothiocyanates were tested and while all lowered cellular GSH levels, only the isothiocyanates that caused Prx3 oxidation were able to trigger cell death. We propose that pro-apoptotic isothiocyanates selectively disrupt mitochondrial redox homeostasis, as indicated by Prx3 oxidation, and that this contributes to their pro-apoptotic activity.


Free Radical Biology and Medicine | 2012

Hepatocyte DNA replication in growing liver requires either glutathione or a single allele of txnrd1.

Justin R. Prigge; Sofi Eriksson; Sonya V. Iverson; Tesia A. Meade; Mario R. Capecchi; Elias S.J. Arnér; Edward E. Schmidt

Ribonucleotide reductase (RNR) activity requires an electron donor, which in bacteria, yeast, and plants is usually either reduced thioredoxin (Trx) or reduced glutaredoxin. Mice lacking glutathione reductase are viable and, although mice lacking thioredoxin reductase 1 (TrxR1) are embryonic-lethal, several studies have shown that mouse cells lacking the txnrd1 gene, encoding TrxR1, can proliferate normally. To better understand the in vivo electron donor requirements for mammalian RNR, we here investigated whether replication of TrxR1-deficient hepatocytes in mouse livers either employed an alternative source of Trx-reducing activity or, instead, solely relied upon the glutathione (GSH) pathway. Neither normal nor genetically TrxR1-deficient livers expressed substantial levels of mRNA splice forms encoding cytosolic variants of TrxR2, and the TrxR1-deficient livers showed severely diminished total TrxR activity, making it unlikely that any alternative TrxR enzyme activities complemented the genetic TrxR1 deficiency. To test whether the GSH pathway was required for replication, GSH levels were depleted by administration of buthionine sulfoximine (BSO) to juvenile mice. In controls not receiving BSO, replicative indexes were similar in hepatocytes having two, one, or no functional alleles of txnrd1. After BSO treatment, hepatocytes containing either two or one copies of this gene were also normal. However, hepatocytes completely lacking a functional txnrd1 gene exhibited severely reduced replicative indexes after GSH depletion. We conclude that hepatocyte proliferation in vivo requires either GSH or at least one functional allele of txnrd1, demonstrating that either the GSH- or the TrxR1-dependent redox pathway can independently support hepatocyte proliferation during liver growth.


Free Radical Biology and Medicine | 2013

A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification

Sonya V. Iverson; Sofi Eriksson; Jianqiang Xu; Justin R. Prigge; Emily A. Talago; Tesia A. Meade; Erin S. Meade; Mario R. Capecchi; Elias S.J. Arnér; Edward E. Schmidt

Besides helping to maintain a reducing intracellular environment, the thioredoxin (Trx) system impacts bioenergetics and drug metabolism. We show that hepatocyte-specific disruption of Txnrd1, encoding Trx reductase-1 (TrxR1), causes a metabolic switch in which lipogenic genes are repressed and periportal hepatocytes become engorged with glycogen. These livers also overexpress machinery for biosynthesis of glutathione and conversion of glycogen into UDP-glucuronate; they stockpile glutathione-S-transferases and UDP-glucuronyl-transferases; and they overexpress xenobiotic exporters. This realigned metabolic profile suggested that the mutant hepatocytes might be preconditioned to more effectively detoxify certain xenobiotic challenges. Hepatocytes convert the pro-toxin acetaminophen (APAP, paracetamol) into cytotoxic N-acetyl-p-benzoquinone imine (NAPQI). APAP defenses include glucuronidation of APAP or glutathionylation of NAPQI, allowing removal by xenobiotic exporters. We found that NAPQI directly inactivates TrxR1, yet Txnrd1-null livers were resistant to APAP-induced hepatotoxicity. Txnrd1-null livers did not have more effective gene expression responses to APAP challenge; however, their constitutive metabolic state supported more robust GSH biosynthesis, glutathionylation, and glucuronidation systems. Following APAP challenge, this effectively sustained the GSH system and attenuated damage.


Free Radical Biology and Medicine | 2014

Sepp1UF forms are N-terminal selenoprotein P truncations that have peroxidase activity when coupled with thioredoxin reductase-1

Suguru Kurokawa; Sofi Eriksson; Kristie L. Rose; Sen Wu; Amy K. Motley; Salisha Hill; Virginia P. Winfrey; W. Hayes McDonald; Mario R. Capecchi; John F. Atkins; Elias S.J. Arnér; Kristina E. Hill; Raymond F. Burk

Mouse selenoprotein P (Sepp1) consists of an N-terminal domain (residues 1-239) that contains one selenocysteine (U) as residue 40 in a proposed redox-active motif (-UYLC-) and a C-terminal domain (residues 240-361) that contains nine selenocysteines. Sepp1 transports selenium from the liver to other tissues by receptor-mediated endocytosis. It also reduces oxidative stress in vivo by an unknown mechanism. A previously uncharacterized plasma form of Sepp1 is filtered in the glomerulus and taken up by renal proximal convoluted tubule (PCT) cells via megalin-mediated endocytosis. We purified Sepp1 forms from the urine of megalin(-/-) mice using a monoclonal antibody to the N-terminal domain. Mass spectrometry revealed that the purified urinary Sepp1 consisted of N-terminal fragments terminating at 11 sites between residues 183 and 208. They were therefore designated Sepp1(UF). Because the N-terminal domain of Sepp1 has a thioredoxin fold, Sepp1(UF) were compared with full-length Sepp1, Sepp1(Δ240-361), and Sepp1(U40S) as a substrate of thioredoxin reductase-1 (TrxR1). All forms of Sepp1 except Sepp1(U40S), which contains serine in place of the selenocysteine, were TrxR1 substrates, catalyzing NADPH oxidation when coupled with H2O2 or tert-butylhydroperoxide as the terminal electron acceptor. These results are compatible with proteolytic cleavage freeing Sepp1(UF) from full-length Sepp1, the form that has the role of selenium transport, allowing Sepp1(UF) to function by itself as a peroxidase. Ultimately, plasma Sepp1(UF) and small selenium-containing proteins are filtered by the glomerulus and taken up by PCT cells via megalin-mediated endocytosis, preventing loss of selenium in the urine and providing selenium for the synthesis of glutathione peroxidase-3.


Experimental Cell Research | 2009

Red wine triggers cell death and thioredoxin reductase inhibition: Effects beyond resveratrol and SIRT1

Karolina Wallenborg; P Vlachos; Sofi Eriksson; Lukas Huijbregts; Elias S.J. Arnér; Bertrand Joseph; Ola Hermanson

Red wine contains antioxidants and is at moderate amounts believed to exert certain positive health effects. Resveratrol is one of the most studied antioxidants in red wine and has been suggested to activate the longevity- and metabolism-associated histone deacetylase SIRT1. Here we show that relatively low concentrations of resveratrol (0.5-3 microM) specifically inhibited neuronal differentiation of neural stem cells in a SIRT1-dependent manner whereas higher concentrations of resveratrol (> or =10 microM) induced a SIRT1-independent cell death. Surprisingly, using a cell based assay, we found that small amounts of red wine (1-5% v/v)--but not white wine--induced a massive and rapid cell death of various cell types, including neural stem cells and several cancer cell lines. This red wine-induced cell death was ethanol-, SIRT1- and resveratrol-independent but associated with increased oxidative stress and inhibition of thioredoxin reductase (TrxR) activity. The TrxR inhibition correlated with the red color (absorbance at 520 nm) of the wines demonstrating that pigment components of red wine can exert profound cellular effects. Our results unveil important roles for SIRT1 and TrxR in resveratrol and red wine-mediated effects on progenitor and cancer cells, and demonstrate that cellular responses to red wine may be more complex than generally appreciated.


Nature Reviews Cancer | 2017

Targeting mutant p53 for efficient cancer therapy

Vladimir Bykov; Sofi Eriksson; Julie Bianchi; Klas G. Wiman

The tumour suppressor gene TP53 is the most frequently mutated gene in cancer. Wild-type p53 can suppress tumour development by multiple pathways. However, mutation of TP53 and the resultant inactivation of p53 allow evasion of tumour cell death and rapid tumour progression. The high frequency of TP53 mutation in tumours has prompted efforts to restore normal function of mutant p53 and thereby trigger tumour cell death and tumour elimination. Small molecules that can reactivate missense-mutant p53 protein have been identified by different strategies, and two compounds are being tested in clinical trials. Novel approaches for targeting TP53 nonsense mutations are also underway. This Review discusses recent progress in pharmacological reactivation of mutant p53 and highlights problems and promises with these strategies.


Biochimica et Biophysica Acta | 2014

Serum thioredoxin reductase levels increase in response to chemically induced acute liver injury

Kang Sun; Sofi Eriksson; Yanping Tan; Le Zhang; Elias S.J. Arnér; Zhang J

BACKGROUND Mammalian thioredoxin reductases (TrxR) are selenoproteins with important roles in antioxidant defense and redox regulation, principally linked to functions of their main substrates thioredoxins (Trx). All major forms of TrxR are intracellular while levels in serum are typically very low. METHODS Serum TrxR levels were determined with immunoblotting using antibodies against mouse TrxR1 and total enzyme activity measurements were performed, with serum and tissue samples from mouse models of liver injury, as triggered by either thioacetamide (TAA) or carbon tetrachloride (CCl4). RESULTS TrxR levels in serum increased upon treatment and correlated closely with those of alanine aminotransferase (ALT), an often used serum biomarker for liver damage. In contrast, Trx1, glutathione reductase, superoxide dismutase or selenium-containing glutathione peroxidase levels in serum displayed much lower increases than TrxR or ALT. CONCLUSIONS Serum TrxR levels are robustly elevated in mouse models of chemically induced liver injury. GENERAL SIGNIFICANCE The exaggerated TrxR release to serum upon liver injury may reflect more complex events than a mere passive release of hepatic enzymes to the extracellular milieu. It can also not be disregarded that enzymatically active TrxR in serum could have yet unidentified physiological functions.

Collaboration


Dive into the Sofi Eriksson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianqiang Xu

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tesia A. Meade

Montana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge