Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sofia Guilherme is active.

Publication


Featured researches published by Sofia Guilherme.


Marine Pollution Bulletin | 2008

Antioxidant and biotransformation responses in Liza aurata under environmental mercury exposure - Relationship with mercury accumulation and implications for public health

Sofia Guilherme; M. Válega; M.E. Pereira; M.A. Santos; Mário Pacheco

This study was carried out in the Laranjo basin (Ria de Aveiro, Portugal), an area impacted by mercury discharges. Liza aurata oxidative stress and biotransformation responses were assessed in the liver and related to total mercury (Hgt) concentrations. A seasonal fish survey revealed a sporadic increase in total glutathione (GSHt) and elevated muscle Hgt levels, although Hg levels did not exceed the EU regulatory limit. As a complement study, fish were caged for three days both close to the bottom and on the water surface at three locations, and displayed higher Hgt levels accompanied by increased GSHt content and catalase activity as well as EROD activity inhibition. The bottom group displayed higher hepatic Hgt and GSHt contents compared with the surface group. Globally, both wild and caged fish revealed that the liver accumulates higher Hgt concentrations than muscle and, thus, better reflects environmental contamination levels. The absence of peroxidative damage in the liver can be attributed to effective detoxification and antioxidant defense.


Mutagenesis | 2010

European eel (Anguilla anguilla) genotoxic and pro-oxidant responses following short-term exposure to Roundup® - a glyphosate-based herbicide.

Sofia Guilherme; Isabel Gaivão; M.A. Santos; Mário Pacheco

The glyphosate-based herbicide, Roundup, is among the most used pesticides worldwide. Due to its extensive use, it has been widely detected in aquatic ecosystems representing a potential threat to non-target organisms, including fish. Despite the negative impact of this commercial formulation in fish, as described in literature, the scarcity of studies assessing its genotoxicity and underlying mechanisms is evident. Therefore, as a novel approach, this study evaluated the genotoxic potential of Roundup to blood cells of the European eel (Anguilla anguilla) following short-term (1 and 3 days) exposure to environmentally realistic concentrations (58 and 116 microg/l), addressing also the possible association with oxidative stress. Thus, comet and erythrocytic nuclear abnormalities (ENAs) assays were adopted, as genotoxic end points, reflecting different types of genetic damage. The pro-oxidant state was assessed through enzymatic (catalase, glutathione-S-transferase, glutathione peroxidase and glutathione reductase) and non-enzymatic (total glutathione content) antioxidants, as well as by lipid peroxidation (LPO) measurements. The Roundup potential to induce DNA strand breaks for both concentrations was demonstrated by the comet assay. The induction of chromosome breakage and/or segregational abnormalities was also demonstrated through the ENA assay, though only after 3-day exposure to both tested concentrations. In addition, the two genotoxic indicators were positively correlated. Antioxidant defences were unresponsive to Roundup. LPO levels increased only for the high concentration after the first day of exposure, indicating that oxidative stress caused by this agrochemical in blood was not severe. Overall results suggested that both DNA damaging effects induced by Roundup are not directly related with an increased pro-oxidant state. Moreover, it was demonstrated that environmentally relevant concentrations of Roundup can pose a health risk for fish populations.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2012

DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide – Elucidation of organ-specificity and the role of oxidative stress

Sofia Guilherme; Isabel Gaivão; M.A. Santos; Mário Pacheco

Organophosphate herbicides are among the most dangerous agrochemicals for the aquatic environment. In this context, Roundup(®), a glyphosate-based herbicide, has been widely detected in natural water bodies, representing a potential threat to non-target organisms, namely fish. Thus, the main goal of the present study was to evaluate the genotoxic potential of Roundup(®) in the teleost fish Anguilla anguilla, addressing the possible causative involvement of oxidative stress. Fish were exposed to environmentally realistic concentrations of this herbicide (58 and 116 μgL(-1)) during one or three days. The standard procedure of the comet assay was applied to gill and liver cells in order to determine organ-specific genetic damage. Since liver is a central organ in xenobiotic metabolism, nucleoids of hepatic cells were also incubated with a lesion-specific repair enzyme (formamidopyrimidine DNA glycosylase - FPG), in order to recognise oxidised purines. Antioxidants were determined in both organs as indicators of pro-oxidant state. In general, both organs displayed an increase in DNA damage for the two Roundup(®) concentrations and exposure times, although liver showed to be less susceptible to the lower concentration. The enzyme-modified comet assay showed the occurrence of FPG-sensitive sites in liver only after a 3-day exposure to the higher Roundup(®) concentration. The antioxidant defences were in general unresponsive, despite a single increment of catalase activity in gills (116 μgL(-1), 3-day) and a decrease of superoxide dismutase activity in liver (58 μgL(-1), 3-day). Overall, the mechanisms involved in Roundup(®)-induced DNA strand-breaks showed to be similar in both organs. Nevertheless, it was demonstrated that the type of DNA damage varies with the concentration and exposure duration. Hence, after 1-day exposure, an increase on pro-oxidant state is not a necessary condition for the induction of DNA-damaging effects of Roundup(®). By increasing the duration of exposure to three days, ROS-dependent processes gained preponderance as a mechanism of DNA-damage induction in the higher concentration.


Science of The Total Environment | 2016

Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining (1)H NMR metabolomics and conventional biochemical assays.

Tiziana Cappello; Fátima Brandão; Sofia Guilherme; M.A. Santos; Maria Maisano; Angela Mauceri; João Canário; Mário Pacheco; Patrícia Pereira

Oxidative stress has been described as a key pathway to initiate mercury (Hg) toxicity in fish. However, the mechanisms underlying Hg-induced oxidative stress in fish still need to be clarified. To this aim, environmental metabolomics in combination with a battery of conventional oxidative stress biomarkers were applied to the gills of golden grey mullet (Liza aurata) collected from Largo do Laranjo (LAR), a confined Hg contaminated area, and São Jacinto (SJ), selected as reference site (Aveiro Lagoon, Portugal). Higher accumulation of inorganic Hg and methylmercury was found in gills of fish from LAR relative to SJ. Nuclear magnetic resonance (NMR)-based metabolomics revealed changes in metabolites related to antioxidant protection, namely depletion of reduced glutathione (GSH) and its constituent amino acids, glutamate and glycine. The interference of Hg with the antioxidant protection of gills was corroborated through oxidative stress endpoints, namely the depletion of glutathione peroxidase and superoxide dismutase activities at LAR. The increase of total glutathione content (reduced glutathione+oxidized glutathione) at LAR, in parallel with GSH depletion aforementioned, indicates the occurrence of massive GSH oxidation under Hg stress, and an inability to carry out its regeneration (glutathione reductase activity was unaltered) or de novo synthesis. Nevertheless, the results suggest the occurrence of alternative mechanisms for preventing lipid peroxidative damage, which may be associated with the enhancement of membrane stabilization/repair processes resulting from depletion in the precursors of phosphatidylcholine (phosphocholine and glycerophosphocholine), as highlighted by NMR spectroscopy. However, the observed decrease in taurine may be attributable to alterations in the structure of cell membranes or interference in osmoregulatory processes. Overall, the novel concurrent use of metabolomics and conventional oxidative stress endpoints demonstrated to be sensitive and effective towards a mechanistically based assessment of Hg toxicity in gills of wild fish, providing new insights into the toxicological pathways underlying the oxidative stress.


Aquatic Toxicology | 2012

Biotransformation modulation and genotoxicity in white seabream upon exposure to paralytic shellfish toxins produced by Gymnodinium catenatum.

Pedro Reis Costa; Patrícia Pereira; Sofia Guilherme; Marisa Barata; Lídia Nicolau; M.A. Santos; Mário Pacheco; Pedro Pousão-Ferreira

Fish are recurrently exposed to paralytic shellfish toxins (PSTs) produced by Gymnodinium catenatum. Nevertheless, the knowledge regarding metabolism of PSTs and their toxic effects in fish is scarce. Consequently, the current study aims to investigate the role of phase I and II detoxification enzymes on PST metabolism in the liver of white seabream (Diplodus sargus), assessing ethoxyresorufin-O-deethylase (EROD) and glutathione S-transferase (GST) activities. Moreover, the genotoxic potential of PSTs was examined through the erythrocytic nuclear abnormality (ENA) assay. Fish were intracoelomically (IC) injected with a nominal dose (expressed as saxitoxin equivalents) of 1.60 μg STXeq kg⁻¹ semipurified from a G. catenatum cell culture with previously determined toxin profile. Fish were sacrificed 2 and 6 days after IC injection. PST levels determined in fish liver were 15.2 and 12.2 μg STXeq kg⁻¹, respectively, at 2 and 6 days after the injection. Though several PSTs were administered, only dcSTX was detected in the liver after 2 and 6 days. This was regarded as an evidence that most of the N-sulfocarbamoyl and decarbamoyl toxins were rapidly biotransformed in D. sargus liver and/or eliminated. This was corroborated by a hepatic GST activity induction at 2 days after injection. Hepatic EROD activity was unresponsive to PSTs, suggesting that these toxins enter phase II of biotransformation directly. The genotoxic potential of PSTs was also demonstrated; these toxins were able to induce cytogenetic damage, such as chromosome (or chromatid) breaks or loss and segregational anomalies, measured by the ENA assay. Overall, this study pointed out the ecological risk associated with the contamination of fish with PSTs generated by G. catenatum blooms, providing the necessary first data for a proper interpretation of biomonitoring programs aiming to assess the impact of phytoplankton blooms in fish.


Aquatic Toxicology | 2014

Are DNA-damaging effects induced by herbicide formulations (Roundup® and Garlon®) in fish transient and reversible upon cessation of exposure?

Sofia Guilherme; M.A. Santos; Isabel Gaivão; Mário Pacheco

Owing to the seasonality of crop cultivation and subsequent periodic/seasonal application of herbicides, their input to the aquatic systems is typically intermittent. Consequently, exposure of fish to this type of contaminants can be short and followed by a period of permanence in non-contaminated areas. Thus, the assessment of genotoxic endpoints in fish after removal of the contamination source appears as a crucial step to improve the knowledge on the dynamics of herbicide genotoxicity, as well as to determine the actual magnitude of risk posed by these agrochemicals. Therefore, the present study intended to shed light on the ability of fish to recover from the DNA damage induced by short-term exposures to the herbicide formulations Roundup(®) (glyphosate-based) and Garlon(®) (triclopyr-based) upon the exposure cessation. European eel (Anguilla anguilla) was exposed to the above commercial formulations for 3 days, and allowed to recover for 1, 7 and 14 days (post-exposure period). The comet assay was used to identify the DNA damage in blood cells during both exposure and post-exposure periods. As an attempt to clarify the DNA damaging mechanisms involved, an extra-step including the incubation of the nucleotides with DNA lesion-specific repair enzyme was added to the standard comet. The genotoxic potential of both herbicides was confirmed, concerning the exposure period. In addition, the involvement of oxidative DNA damage on the action of Roundup(®) (pointed out as pyrimidine bases oxidation) was demonstrated, while for Garlon(®) this damaging mechanism was less evident. Fish exposed to Garlon(®), though presenting some evidence towards a tendency of recovery, did not achieve a complete restoration of DNA integrity. In what concerns to Roundup(®), a recovery was evident when considering non-specific DNA damage on day 14 post-exposure. In addition, this herbicide was able to induce a late oxidative DNA damage (day 14). Blood cells of A. anguilla exposed to Roundup(®) appeared to be more successful in repairing damage with a non-specific cause than that associated to base oxidation. Overall, the present findings highlighted the genetic hazard to fish associated to the addressed agrochemicals, reinforcing the hypothesis of long-lasting damage.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2014

Progression of DNA damage induced by a glyphosate-based herbicide in fish (Anguilla anguilla) upon exposure and post-exposure periods — Insights into the mechanisms of genotoxicity and DNA repair

Ana Marques; Sofia Guilherme; Isabel Gaivão; M.A. Santos; Mário Pacheco

Roundup® is a glyphosate-based herbicide widely used with both agricultural and non-agricultural purposes, which has been demonstrated to represent a risk to non-target aquatic organisms, namely fish. Among the described effects to fish, genotoxicity has been pointed out as one of the most hazardous. However, the genotoxic mechanisms of Roundup® as well as the involvement of the oxidative DNA damage repair system are not entirely understood. Hence, this work aimed to improve the knowledge on the progression of DNA damage upon short-term exposure (3 days) and post-exposure (1-14 days) periods in association with DNA repair processes in Anguilla anguilla exposed to Roundup® (58 and 116 μg L⁻¹). DNA damage in hepatic cells was evaluated by the comet assay improved with the DNA-lesion specific endonucleases FPG and EndoIII. In order to evaluate the oxidative DNA damage repair ability, an in vitro base excision repair (BER) assay was performed, testing hepatic subcellular extracts. Besides the confirmation of the genotoxic potential of this herbicide, oxidative damage was implicit as an important mechanism of genetic damage, which showed to be transient, since DNA integrity returned to the control levels on the first day after cessation of exposure. An increased capacity to repair oxidative DNA damage emerging in the post-exposure period revealed to be a crucial pathway for the A. anguilla recovery; nevertheless, DNA repair machinery showed to be susceptible to inhibitory actions during the exposure period, disclosing another facet of the risk associated with the tested agrochemical.


Ecotoxicology | 2016

Propensity to metal accumulation and oxidative stress responses of two benthic species (Cerastoderma edule and Nephtys hombergii): are tolerance processes limiting their responsiveness?

Ana Marques; David Piló; Olinda Araújo; Fábio Pereira; Sofia Guilherme; Susana Carvalho; M.A. Santos; Mário Pacheco; Patrícia Pereira

The chronic exposure of benthic organisms to metals in sediments can lead to the development of tolerance mechanisms, thus diminishing their responsiveness. This study aims to evaluate the accumulation profiles of V, Cr, Co, Ni, As, Cd, Pb and Hg and antioxidant system responses of two benthic organisms (Cerastoderma edule, Bivalvia; Nephtys hombergii, Polychaeta). This approach will provide clarifications about the ability of each species to signalise metal contamination. Organisms of both species were collected at the Tagus estuary, in two sites with distinct contamination degrees (ALC, slightly contaminated; BAR, highly contaminated). Accordingly, C. edule accumulated higher concentrations of As, Pb and Hg at BAR compared to ALC. However, antioxidant responses of C. edule were almost unaltered at BAR and no peroxidative damage occurred, suggesting adjustment mechanisms to the presence of metals. In contrast, N. hombergii showed a minor propensity to metal accumulation, only signalising spatial differences for As and Pb and accumulating lower concentrations of metals than C. edule. The differences in metal accumulation observed between species might be due to their distinctive foraging behaviour and/or the ability of N. hombergii to minimise the metal uptake. Despite that, the accumulation of As and Pb was on the basis of the polychaete antioxidant defences inhibition at BAR, including CAT, SOD, GR and GPx. The integrated biomarker response index (IBRv2) confirmed that N. hombergii was more affected by metal exposure than C. edule. In the light of current findings, in field-based studies, the information of C. edule as a bioindicator should be complemented by that provided by another benthic species, since tolerance mechanisms to metals can hinder a correct diagnosis of sediment contamination and of the system’s health. Overall, the present study contributed to improve the lack of fundamental knowledge of two widespread and common estuarine species, providing insights of the metal accumulation profiles under a scenario of chronic contamination. Finally, this work provided useful information that can be applied in the interpretation of future environmental monitoring studies.


Pesticide Biochemistry and Physiology | 2014

Assessment of chromosomal damage induced by a deltamethrin-based insecticide in fish (Anguilla anguilla L.) – A follow-up study upon exposure and post-exposure periods

Ana Marques; Marco Custódio; Sofia Guilherme; Isabel Gaivão; M.A. Santos; Mário Pacheco

The pyrethroid insecticide Decis®, containing deltamethrin as active ingredient, is among the most popular broad-spectrum biocides, with wide application in agriculture and home pest control. The occurrence of deltamethrin in the aquatic environment is well-established, but the possible genotoxic effects of Decis® in non-target organisms, namely fish, remain unknown. Hence, this work aimed to evaluate the cytogenetic damaging potential of Decis® in European eel (Anguilla anguilla L.), adopting the erythrocytic nuclear abnormalities (ENAs) assay. In addition, it was intended to investigate the damage progression in the post-exposure period. The frequency of immature erythrocytes (IE) was also determined to provide indirect information on the erythrocyte catabolism and erythropoiesis rate. Fish were exposed to 17.5 and 35 μg L(-1) of Decis® (equivalent to 0.05 and 0.1 μg L(-1) of deltamethrin, respectively) during 1 and 3 days. Thereafter, fish were transferred to clean water and kept for 1, 7 and 14 days. The results demonstrated a clear potential to induce chromosomal damage following 3 days exposure, depicted in an ENA frequency increase for both Decis® concentrations. The transient nature of this cytogenetic damage was also demonstrated, as ENA frequency returned to the control level 1 and 7 days after cessation of the exposure, respectively for the higher and the lower Decis® concentration. Moreover, this response pattern suggested a rapid metabolization and elimination of the formulation constituents by A. anguilla, combined with an increased erythrocyte turnover in fish exposed to the higher Decis® concentration, as pointed out by the IE frequency rise. Overall, the demonstrated genotoxic properties of Decis® pointed out increased risk factors to fish exposed to this insecticide.


Pesticide Biochemistry and Physiology | 2016

Evidences of DNA and chromosomal damage induced by the mancozeb-based fungicide Mancozan® in fish (Anguilla anguilla L.)

Ana Marques; Andreia Rego; Sofia Guilherme; Isabel Gaivão; M.A. Santos; Mário Pacheco

The formulation Mancozan®, containing mancozeb as active ingredient, is among the most widely used fungicides. Although mancozeb has been detected in surface waters, studies addressing the genotoxic risk to fish arising from the use of this formulation, testing environmentally realistic concentrations, are absent from the literature. Hence, this work aimed to investigate the DNA and chromosome damaging potential of Mancozan® (0.29 and 2.9μgL-1) in the European eel (Anguilla anguilla L.), after a short-term exposure (3days), through the adoption of the comet and the erythrocytic nuclear abnormality (ENA) assays. In addition, it was intended to elucidate the subjacent damage mechanisms, improving the comet assay with the adoption of the endonucleases formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (EndoIII), which detect oxidized bases. The highest Mancozan® concentration was able to affect the DNA integrity (comet assay), while the adoption of endonucleases pointed out an oxidative cause to the damage. Regarding the chromosomal damage (ENA assay), both concentrations displayed significant effects, revealing the clastogenic and/or aneugenic properties of Mancozan®. Furthermore, the two genotoxic endpoints were significantly correlated. Overall, the results revealed a genetic hazard to fish inhabiting aquatic systems contaminated by Mancozan® and strongly recommend the development of biomonitoring and regulatory policies regarding the utilization of this agrochemical.

Collaboration


Dive into the Sofia Guilherme's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel Gaivão

University of Trás-os-Montes and Alto Douro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana Carvalho

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fábio Pereira

Instituto Português do Mar e da Atmosfera

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge