Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sofia Mayans is active.

Publication


Featured researches published by Sofia Mayans.


Diabetes | 2012

Adoptive Transfer of Immunomodulatory M2 Macrophages Prevents Type 1 Diabetes in NOD Mice

Roham Parsa; Pernilla Andresen; Alan Gillett; Sohel Mia; Xing-Mei Zhang; Sofia Mayans; Dan Holmberg; Robert A. Harris

Macrophages are multifunctional immune cells that may either drive or modulate disease pathogenesis depending on their activation phenotype. Autoimmune type 1 diabetes (T1D) is a chronic proinflammatory condition characterized by unresolved destruction of pancreatic islets. Adoptive cell transfer of macrophages with immunosuppressive properties represents a novel immunotherapy for treatment of such chronic autoimmune diseases. We used a panel of cytokines and other stimuli to discern the most effective regimen for in vitro induction of immunosuppressive macrophages (M2r) and determined interleukin (IL)-4/IL-10/transforming growth factor-β (TGF-β) to be optimal. M2r cells expressed programmed cell death 1 ligand-2, fragment crystallizable region γ receptor IIb, IL-10, and TGF-β, had a potent deactivating effect on proinflammatory lipopolysaccharide/interferon-γ–stimulated macrophages, and significantly suppressed T-cell proliferation. Clinical therapeutic efficacy was assessed after adoptive transfer in NOD T1D mice, and after a single transfer of M2r macrophages, >80% of treated NOD mice were protected against T1D for at least 3 months, even when transfer was conducted just prior to clinical onset. Fluorescent imaging analyses revealed that adoptively transferred M2r macrophages specifically homed to the inflamed pancreas, promoting β-cell survival. We suggest that M2r macrophage therapy represents a novel intervention that stops ongoing autoimmune T1D and may have relevance in a clinical setting.


PLOS ONE | 2011

Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus.

Martins Kalis; Caroline Bolmeson; Jonathan Lou S. Esguerra; Shashank Gupta; Anna Edlund; Neivis Tormo-Badia; Dina Speidel; Dan Holmberg; Sofia Mayans; Nelson K. S. Khoo; A. Wendt; Lena Eliasson; Corrado M. Cilio

Mature microRNAs (miRNAs), derived through cleavage of pre-miRNAs by the Dicer1 enzyme, regulate protein expression in many cell-types including cells in the pancreatic islets of Langerhans. To investigate the importance of miRNAs in mouse insulin secreting β-cells, we have generated mice with a β-cells specific disruption of the Dicer1 gene using the Cre-lox system controlled by the rat insulin promoter (RIP). In contrast to their normoglycaemic control littermates (RIP-Cre+/− Dicer1 Δ/wt), RIP-Cre+/− Dicer1flox/flox mice (RIP-Cre Dicer1 Δ/Δ) developed progressive hyperglycaemia and full-blown diabetes mellitus in adulthood that recapitulated the natural history of the spontaneous disease in mice. Reduced insulin gene expression and concomitant reduced insulin secretion preceded the hyperglycaemic state and diabetes development. Immunohistochemical, flow cytometric and ultrastructural analyses revealed altered islet morphology, marked decreased β-cell mass, reduced numbers of granules within the β-cells and reduced granule docking in adult RIP-Cre Dicer1 Δ/Δ mice. β-cell specific Dicer1 deletion did not appear to disrupt fetal and neonatal β-cell development as 2-week old RIP-Cre Dicer1 Δ/Δ mice showed ultrastructurally normal β-cells and intact insulin secretion. In conclusion, we have demonstrated that a β-cell specific disruption of the miRNAs network, although allowing for apparently normal β-cell development, leads to progressive impairment of insulin secretion, glucose homeostasis and diabetes development.


European Journal of Human Genetics | 2007

TCF7L2 polymorphisms are associated with type 2 diabetes in northern Sweden

Sofia Mayans; Kurt Lackovic; Petter Lindgren; Karin Ruikka; Åsa Ågren; Mats Eliasson; Dan Holmberg

A recent study found association of one microsatellite and five single nucleotide polymorphisms (SNPs) in intron 3 of the TCF7L2 gene with type 2 diabetes (T2D) in the Icelandic, Danish and American populations. The aim of the present study was to investigate if those SNPs were associated to T2D in two (family- and population-based) cohorts from northern Sweden. We genotyped four of the associated SNPs in a case–control cohort consisting of 872 T2D cases and 857 controls matched with respect to age, sex and geographical origin and in a sample of 59 extended families (148 affected and 83 unaffected individuals). Here, we report replication of association between T2D and three SNPs in the case–control (rs7901695, P=0.003; rs7901346, P=0.00002; and rs12255372, P=0.000004) and two SNPs in the family-based (rs7901695, P=0.01 and rs7901346, P=0.04) samples from northern Sweden. This replication strengthens the evidence for involvement of TCF7L2 in T2D.


BMC Medical Genetics | 2007

CT60 genotype does not affect CTLA-4 isoform expression despite association to T1D and AITD in northern Sweden

Sofia Mayans; Kurt Lackovic; Caroline Nyholm; Petter Lindgren; Karin Ruikka; Mats Eliasson; Corrado M. Cilio; Dan Holmberg

BackgroundPolymorphisms in and around the CTLA-4 gene have previously been associated to T1D and AITD in several populations. One such single nucleotide polymorphism (SNP), CT60, has been reported to affect the expression level ratio of the soluble (sCTLA-4) to full length CTLA-4 (flCTLA-4) isoforms. The aims of our study were to replicate the association previously published by Ueda et al. of polymorphisms in the CTLA-4 region to T1D and AITD and to determine whether the CT60 polymorphism affects the expression level ratio of sCTLA-4/flCTLA-4 in our population.MethodsThree SNPs were genotyped in 253 cases (104 AITD cases and 149 T1D cases) and 865 ethnically matched controls. Blood from 23 healthy individuals was used to quantify mRNA expression of CTLA-4 isoforms in CD4+ cells using real-time PCR. Serum from 102 cases and 59 healthy individuals was used to determine the level of sCTLA-4 protein.ResultsHere we show association of the MH30, CT60 and JO31 polymorphisms to T1D and AITD in northern Sweden. We also observed a higher frequency of the CT60 disease susceptible allele in our controls compared to the British, Italian and Dutch populations, which might contribute to the high frequency of T1D in Sweden. In contrast to previously published findings, however, we were unable to find differences in the sCTLA-4/flCTLA-4 expression ratio based on the CT60 genotype in 23 healthy volunteers, also from northern Sweden. Analysis of sCTLA-4 protein levels in serum showed no correlation between sCTLA-4 protein levels and disease status or CT60 genotype.ConclusionAssociation was found between T1D/AITD and all three polymorphisms investigated. However, in contrast to previous investigations, sCTLA-4 RNA and protein expression levels did not differ based on CT60 genotype. Our results do not rule out the CT60 SNP as an important polymorphism in the development of T1D or AITD, but suggest that further investigations are necessary to elucidate the effect of the CTLA-4 region on the development of T1D and AITD.


Diabetes | 2010

Quantification and Three-Dimensional Imaging of the Insulitis-Induced Destruction of β-Cells in Murine Type 1 Diabetes

Tomas Alanentalo; Andreas Hörnblad; Sofia Mayans; Anna Karin Nilsson; James Sharpe; Åsa Larefalk; Ulf Ahlgren; Dan Holmberg

OBJECTIVE The aim of this study was to refine the information regarding the quantitative and spatial dynamics of infiltrating lymphocytes and remaining β-cell volume during the progression of type 1 diabetes in the nonobese diabetic (NOD) mouse model of the disease. RESEARCH DESIGN AND METHODS Using an ex vivo technique, optical projection tomography (OPT), we quantified and assessed the three-dimensional spatial development and progression of insulitis and β-cell destruction in pancreata from diabetes-prone NOD and non–diabetes-prone congenic NOD.H-2b mice between 3 and 16 weeks of age. RESULTS Together with results showing the spatial dynamics of the insulitis process, we provide data of β-cell volume distributions down to the level of the individual islets and throughout the pancreas during the development and progression of type 1 diabetes. Our data provide evidence for a compensatory growth potential of the larger insulin+ islets during the later stages of the disease around the time point for development of clinical diabetes. This is in contrast to smaller islets, which appear less resistant to the autoimmune attack. We also provide new information on the spatial dynamics of the insulitis process itself, including its apparently random distribution at onset, the local variations during its further development, and the formation of structures resembling tertiary lymphoid organs at later phases of insulitis progression. CONCLUSIONS Our data provide a powerful tool for phenotypic analysis of genetic and environmental effects on type 1 diabetes etiology as well as for evaluating the potential effect of therapeutic regimes.


Immunity | 2014

αβT Cell Receptors Expressed by CD4−CD8αβ− Intraepithelial T Cells Drive Their Fate into a Unique Lineage with Unusual MHC Reactivities

Sofia Mayans; Dariusz Stepniak; Sakina F. Palida; Alexandre Larange; Joanna Dreux; Britni M. Arlian; Ryo Shinnakasu; Mitchell Kronenberg; Hilde Cheroutre; Florence Lambolez

Coreceptor CD4 and CD8αβ double-negative (DN) TCRαβ(+) intraepithelial T cells, although numerous, have been greatly overlooked and their contribution to the immune response is not known. Here we used T cell receptor (TCR) sequencing of single cells combined with retrogenic expression of TCRs to study the fate and the major histocompatibility complex (MHC) restriction of DN TCRαβ(+) intraepithelial T cells. The data show that commitment of thymic precursors to the DN TCRαβ(+) lineage is imprinted by their TCR specificity. Moreover, the TCRs they express display a diverse and unusual pattern of MHC restriction that is nonoverlapping with that of CD4(+) or CD8αβ(+) T cells, indicating that they sense antigens that are not recognized by the conventional T cell subsets. The new insights indicate that DN TCRαβ(+) T cells form a third lineage of TCRαβ T lymphocytes expressing a variable TCR repertoire, which serve nonredundant immune functions.


Journal of Immunology | 2010

Variation in the Cd3 zeta (Cd247) gene correlates with altered T cell activation and is associated with autoimmune diabetes.

Marie Lundholm; Sofia Mayans; Vinicius Motta; Anna Löfgren-Burström; Jayne S. Danska; Dan Holmberg

Tuning of TCR-mediated activation was demonstrated to be critical for lineage fate in T cell development, as well as in the control of autoimmunity. In this study, we identify a novel diabetes susceptibility gene, Idd28, in the NOD mouse and provide evidence that Cd3ζ (Cd247) constitutes a prime candidate gene for this locus. Moreover, we show that the allele of the Cd3ζ gene expressed in NOD and DBA/2 mouse strains confers lower levels of T cell activation compared with the allele expressed by C57BL/6 (B6), BALB/c, and C3H/HeJ mice. These results support a model in which the development of autoimmune diabetes is dependent on a TCR signal mediated by a less-efficient NOD allele of the Cd3ζ gene.


Diabetes | 2006

Linkage but Not Association of Calpain-10 to Type 2 Diabetes Replicated in Northern Sweden

Elisabet Einarsdottir; Sofia Mayans; Karin Ruikka; Stefan Andersson Escher; Petter Lindgren; Åsa Ågren; Mats Eliasson; Dan Holmberg

We present data from a genome-wide scan identifying genetic factors conferring susceptibility to type 2 diabetes. The linkage analysis was based on 59 families from northern Sweden, consisting of a total of 129 cases of type 2 diabetes and 19 individuals with impaired glucose tolerance. Model-free linkage analysis revealed a maximum multipoint logarithm of odds score of 3.19 for D2S2987 at 267.7 cM (P = 0.00058), suggesting that a gene conferring susceptibility to type 2 diabetes in the northern Swedish population resides in the 2q37 region. These data replicate, in a European population, previously identified linkage of marker loci in this region to type 2 diabetes in Mexican Americans. In contrast, no evidence in support of association to the previously identified single nucleotide polymorphisms in the calpain-10 gene was observed in a case-control cohort derived from the same population.


PLOS ONE | 2016

A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis

Nina Fransén-Pettersson; Nadia Duarte; Julia Nilsson; Marie Lundholm; Sofia Mayans; Åsa Larefalk; Tine D. Hannibal; Lisbeth Hansen; Anja Schmidt-Christensen; Fredrik Ivars; Susanna Cardell; Richard Palmqvist; Bjoern Rozell; Dan Holmberg

Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.


Acta Neurologica Scandinavica | 2018

Polymorphisms in dopamine-associated genes and cognitive decline in Parkinson's disease

David Bäckström; M. Eriksson Domellöf; Gabriel Granåsen; Jan Linder; Sofia Mayans; Eva Elgh; Henrik Zetterberg; Kaj Blennow; Lars Forsgren

Cognitive decline is common in Parkinsons disease (PD), but the underlying mechanisms for this complication are incompletely understood. Genotypes affecting dopamine transmission may be of importance. This study investigates whether genotypes associated with reduced prefrontal dopaminergic tone and/or reduced dopamine D2‐receptor availability (Catechol‐O‐methyltransferase [COMT] Val158Met genotype and DRD2 C957T genotype) affect the development of cognitive deficits in PD.

Collaboration


Dive into the Sofia Mayans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge