Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sofia Papadimitriou is active.

Publication


Featured researches published by Sofia Papadimitriou.


Journal of Controlled Release | 2009

Novel self-assembled core-shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release.

Sofia Papadimitriou; Dimitrios N. Bikiaris

Poly(propylene succinate-co-caprolactone) copolymers [P(PSu-co-CL)] with different epsilon-caprolactone (epsilon-CL) to propylene succcinate (PSu) monomer ratios were synthesized using ring opening polymerization. These polymers consisted of crystalline poly(epsilon-caprolactone) (PCL) and amorphous poly(propylene succinate) (PPSu) moieties, as shown by WAXD. In vitro biocompatibility studies showed that these copolyesters are biocompatible. Drug-loaded nanoparticles, using tibolone as a model drug, were prepared by the solvent evaporation method. Nanoparticle size ranged between 150 and 190 nm and decreased with increasing propylene succinate (PSu) ratio in the copolymers. Nanoparticle yield, encapsulation efficiency, and drug loading increased with increasing PSu ratio. Scanning Electron Microscopy (SEM) revealed that the prepared nanoparticles had a spherical shape and Transmission Electron Microscopy (TEM) showed that they were self-assembled in core-shell structures. Amorphous PPSu and crystalline PCL comprised the core and shell, respectively. The drug is mainly located into the amorphous core in the form of nanocrystals. Drug release studies showed that complete release of the drug from the nanoparticles occurs over a period of 50 h. The release rate is greatly influenced by the copolymer composition, nanoparticle size, and encapsulation efficiency. Among the main advantages of the nanoparticles produced in this study is the absence of burst effect during drug release.


European Journal of Pharmaceutics and Biopharmaceutics | 2012

Optimizing the ability of PVP/PEG mixtures to be used as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique using artificial neural networks: I

Sofia Papadimitriou; Panagiotis Barmpalexis; Evangelos Karavas; Dimitrios N. Bikiaris

In the present study, the efficiency of PVP/PEG200 mixtures as appropriate carries for the preparation of solid dispersions by melt mixing was evaluated. Felodipine (FELO) was used as a poorly water soluble model drug. The effect of several melt mixing parameters, (PVP/PEG ratio, time and temperature of melt mixing, and drug content), on the physical state of FELO and the dissolution characteristics of the dispersions were investigated. DSC, XRD, and SEM analysis revealed that in all cases, amorphous drug nanodispersions were prepared. This was attributed to the increased miscibility of the PVP-FELO system, induced by the presence of PEG200, which acted as plasticizer. FT-IR analysis showed hydrogen bonding between FELO (NH) and the PVP carrier (CO). The release rate of the drug depends mainly on the drug content and is higher in solid dispersions with low drug content and ratio of carrier to plasticizer (PVP/PEG200). The melt mixing variations (time and temperature of mixing) had lower impact on FELO release rate. Finally, artificial neural networks, used to correlate the examined formulation and process variables of hot melt mixing with dissolution parameters, showed good prediction ability.


International Journal of Pharmaceutics | 2012

Chitosan-g-PEG nanoparticles ionically crosslinked with poly(glutamic acid) and tripolyphosphate as protein delivery systems.

Sofia Papadimitriou; Dimitris S. Achilias; Dimitrios N. Bikiaris

In the present study chitosan grafted copolymers with poly(ethylene glycol) (CS-g-PEG) were prepared and studied using PEG with molecular weights 2000 and 5000g/mol. The materials were characterized using (1)H NMR, FTIR and WAXD techniques. These polyelectrolytes were ionically crosslinked with tripolyphosphate (TPP) and poly(glutamic acid) (PGA) at different polymer/crosslinking agent ratios (1:1, 2:1, 3:1 and 4:1, w/w) for the nanoencapsulation of bovine serum albumin (BSA). Prepared nanoparticles are spherical in shape with a mean diameter ranging from 150 to 600 nm. The size depends mainly to the molecular weight of the PEG and the crosslinking agent used. The PEG molecular weight also seems to affect the release rate of BSA especially the first burst effect which appears to be high in copolymers containing PEG5000, compared with copolymer prepared with PEG2000, and it is also higher when PGA was used as crosslinking agent, instead of TPP.


Journal of Controlled Release | 2010

Facile synthesis of polyester-PEG triblock copolymers and preparation of amphiphilic nanoparticles as drug carriers.

A. Vassiliou; Sofia Papadimitriou; Dimitrios N. Bikiaris; George Mattheolabakis; Konstantinos Avgoustakis

Novel amphiphilic triblock copolymers of poly(propylene succinate) (PPSu) and poly(ethylene glycol) (PEG) with different hydrophobic/hydrophilic ratios were synthesized using a facile one-pot procedure. The molecular weight of the copolymers was adjusted by varying the molecular weight of PPSu while keeping that of PEG constant. The copolymers exhibited glass transition temperatures between -36.0 and -38°C and single melting points around 44°C. WAXD data indicated that both blocks of the copolymers could crystallize. The mPEG-PPSu copolymers exhibited low in vitro toxicity against HUVEC cells. The synthesized copolymers were used to prepare core-shell nanoparticles with hydrophobic PPSu and hydrophilic PEG forming the core and shell, respectively. The drug loading efficiency and drug release properties of the mPEG-PPSu nanoparticles were investigated using two model drugs: the hydrophilic Ropinirole and the hydrophobic Tibolone. The mean size of the drug-loaded mPEG-PPSu nanoparticles ranged between 150 and 300nm and increased with the molecular weight of the PPSu block. The drug loading efficiency of the nanoparticles was found to be dependent upon drug hydrophilicity and was much higher for the hydrophobic Tibolone. Drug release characteristics also depended on drug hydrophilicity: the hydrophilic Ropinirole was released at a much higher rate than the hydrophobic Tibolone. Contrary to Ropinirole, the profiles of Tibolone exhibited an early phase of burst release followed by a phase of slow release. By varying the composition (mPEG/PPSu ratio) of mPEG-PPSU copolymers, nanoparticles of different sizes and drug loading capacities can be synthesized exhibiting different drug release characteristics. Based on the results obtained, the proposed mPEG-PPSu copolymers can be useful in various controlled drug delivery applications, especially those involving relatively hydrophobic drugs.


International Journal of Nanomedicine | 2011

Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior.

Vassilios Karavelidis; Evangelos Karavas; Dimitrios J. Giliopoulos; Sofia Papadimitriou; Dimitrios N. Bikiaris

Four new polyesters based on 1,3-propanediol and different aliphatic dicarboxylic acids were used to prepare ropinirole HCl-loaded nanoparticles. The novelty of this study lies in the use of polyesters with similar melting points but different degrees of crystallinity, varying from 29.8% to 67.5%, as drug nanocarriers. Based on their toxicity to human umbilical vein endothelial cells, these aliphatic polyesters were found to have cytotoxicity similar to that of polylactic acid and so may be considered as prominent drug nanocarriers. Drug encapsulation in polyesters was performed via an emulsification/solvent evaporation method. The mean particle size of drug-loaded nanoparticles was 164–228 nm, and the drug loading content was 16%–23%. Wide angle X-ray diffraction patterns showed that ropinirole HCl existed in an amorphous state within the nanoparticle polymer matrices. Drug release diagrams revealed a burst effect for ropinirole HCl in the first 6 hours, probably due to release of drug located on the nanoparticle surface, followed by slower release. The degree of crystallinity of the host polymer matrix seemed to be an important parameter, because higher drug release rates were observed in polyesters with a low degree of crystallinity.


Current Drug Delivery | 2009

Improvement in chemical and physical stability of fluvastatin drug through hydrogen bonding interactions with different polymer matrices.

George Z. Papageorgiou; Sofia Papadimitriou; Evangelos Karavas; Emmanouel Georgarakis; Aristides Docoslis; Dimitrios N. Bikiaris

Solid dispersions of Fluvastatin with polyvinylpyrrolidone (PVP), eudragit RS100 (Eud), and chitosan (CS) as drug carrier matrices, were prepared using different techniques in order to evaluate their effect on Fluvastatin stability during storage. The characterization of the three different systems was performed with the use of differential scanning calorimetry (DSC) and wide angle X-ray diffractometry (WAXD). It was revealed that amorphization of the drug occurred in all of the solid dispersions of Fluvastatin as a result of drug dissolution into polymer matrices and due to physical interactions (hydrogen bonding) between the polymer matrix and Fluvastatin. This was established through the use of FTIR spectroscopy. SEM and micro-Raman spectroscopy showed that Fluvastatin was interspersed to the polymer matrices in the form of molecular dispersion and nanodispersion, too. The finding that completely different polymer matrices, used here as drug carriers, produce completely different dissolution profiles for each one of the solid dispersions, suggests that each matrix follows a different drug release mechanism. Hydrogen bonding interactions as in the case of CS/Fluva solid dispersions lead to controlled release profiles. All formulations were subjected to accelerated aging in order to evaluate Fluvastatin stability. From by-products analysis it was found that Fluvastatin is very unstable during storage and anti-isomer as well as lactones are the main formed by-products. On the other hand, solid dispersions due to the evolved interactions of their reactive groups with Fluvastatin provide a sufficient physical and chemical stability. The extent of interactions seems to play the most important role in the drug stabilization.


International Journal of Pharmaceutics | 2013

Novel core-shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: preparation, characterization and release properties.

Maria Filippousi; Sofia Papadimitriou; Dimitrios N. Bikiaris; E. Pavlidou; M. Angelakeris; Dimitris Zamboulis; He Tian; Gustaaf Van Tendeloo

Theranostic polymeric nanocarriers loaded with anticancer drug Taxol and superparamagnetic iron oxide nanocrystals have been developed for possible magnetic resonance imaging (MRI) use and cancer therapy. Multifunctional nanocarriers with a core-shell structure have been prepared by coating superparamagnetic Fe3O4 nanoparticles with block copolymer of poly(ethylene glycol)-b-poly(propylene succinate) with variable molecular weights of the hydrophobic block poly(prolylene succinate). The multifunctional polymer nano-vehicles were prepared using a nanoprecipitation method. Scanning transmission electron microscopy revealed the encapsulation of magnetic nanoparticles inside the polymeric matrix. Energy dispersive X-ray spectroscopy and electron energy loss spectroscopy mapping allowed us to determine the presence of the different material ingredients in a quantitative way. The diameter of the nanoparticles is below 250 nm yielding satisfactory encapsulation efficiency. The nanoparticles exhibit a biphasic drug release pattern in vitro over 15 days depending on the molecular weight of the hydrophobic part of the polymer matrix. These new systems where anti-cancer therapeutics like Taxol and iron oxide nanoparticles (IOs) are co-encapsulated into new facile polymeric nanoparticles, could be addressed as potential multifunctional vehicles for simultaneous drug delivery and targeting imaging as well as real time monitoring of therapeutic effects.


European Journal of Pharmaceutics and Biopharmaceutics | 2013

Development of PVP/PEG mixtures as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique and optimization of dissolution using artificial neural networks

Panagiotis Barmpalexis; Ioannis A. Koutsidis; Evangelos Karavas; Dimitra Louka; Sofia Papadimitriou; Dimitrios N. Bikiaris

The effect of plasticizers (PEG) molecular weight (MW) on PVP based solid dispersions (SDs), prepared by melt mixing, was evaluated in the present study using Tibolone as a poorly water soluble model drug. PEGs with MW of 400, 600, and 2000 g/mol were tested, and the effect of drug content, time and temperature of melt mixing on the physical state of Tibolone, and the dissolution characteristics from SDs was investigated. PVP blends with PEG400 and PEG600 were completely miscible, while blends were heterogeneous. Furthermore, a single Tg recorded in all samples, indicating that Tibolone was dispersed in a molecular lever (or in the form of nanodispersions), varied with varying PEGs molecular weight, melt mixing temperature, and drug content, while FTIR analysis indicated significant interactions between Tibolone and PVP/PEG matrices. All prepared solid dispersion showed long-term physical stability (18 months in room temperature). The extent of interaction between mixture components was verified using Fox and Gordon-Taylor equations. Artificial neural networks, used to correlate the studied factors with selected dissolution characteristics, showed good prediction ability.


Journal of Nanomaterials | 2009

Nanoencapsulation of nimodipine in novel biocompatible poly(propylene-co-butylene succinate) aliphatic copolyesters for sustained release

Sofia Papadimitriou; George Z. Papageorgiou; Feras Imad Kanaze; Manolis Georgarakis; Dimitrios N. Bikiaris

Biocompatible poly(propylene-co-butylene succinate) (PPBSu) copolyesters, containing up to 50 mol% butylene succinate units, were synthesized by the two-stage melt polycondensation method (esterification and polycondensation). The copolymers were fully characterized and biocompatibility studies were also performed. They were proved to be biocompatible and they were used as polymermatrices for the preparation of drug loaded nanoparticles. Nimodipine was selected as a model hydrophobic poorly water soluble drug. From the results obtained by dynamic light scattering (DLS) and scanning electron microscopy (SEM), drug loaded copolymer nanoparticles were found to exhibit a spherical shape and their mean diameter appeared in the range of 180-200 nm. Fourier Transformation-Infrared Spectroscopy (FTIR) spectra indicated that no chemical interaction between the drug and the matrix could be justified, while Wide-Angle X-Ray Diffraction (WAXD) patterns proved a low degree of crystallinity of Nimodipine in the nanoparticles. The release behavior of the model drug from nanoparticles was also investigated in order to identify modifications and find out any possible correlation between the chemical composition of the polymer matrix and the drug release rates.


Drug Development and Industrial Pharmacy | 2009

Dissolution rate enhancement of the poorly water-soluble drug Tibolone using PVP, SiO2, and their nanocomposites as appropriate drug carriers

Sofia Papadimitriou; Dimitrios N. Bikiaris

Background: Creation of immediate release formulations for the poorly water-soluble drug Tibolone through the use of solid dispersions (SDs). Aim: SD systems of Tibolone (Tibo) with poly(vinylpyrrolidone) (PVP), fumed SiO2 nanoparticles, and their corresponding ternary systems (PVP/SiO2/Tibo) were prepared and studied in order to produce formulations with enhanced drug dissolution rates. Method: The prepared SDs were characterized by the use of differential scanning calorimetry and wide-angle X-ray diffractometry techniques. Also dissolution experiments were performed. Results: From the results it was concluded that PVP as well as SiO2 can be used as appropriate carriers for the amorphization of Tibo, even when the drug is used at high concentrations (20–30%, w/w). This is due to the evolved interactions taking place between the drug and the used carriers, as was verified by Fourier transform infrared spectroscopy. At higher concentrations the drug was recrystallized. Similar are the observations on the ternary PVP/SiO2/Tibo SDs. The dissolution profiles of the drug in PVP/Tibo and SiO2/Tibo SDs are directly dependent on the physical state of the drug. Immediately release rates are observed in SD with low drug concentrations, in which Tibo was in amorphous state. However, these release profiles are drastically changed in the ternary PVP/SiO2/Tibo SDs. An immediate release profile is observed for low drug concentrations and an almost sustained release as the concentration of Tibo increases. This is due to the weak interactions that take place between PVP and SiO2, which result in alterations of the characteristics of the carrier (PVP/SiO2 nanocomposites). Conclusions: Immediate release formulation was created for Tibolone as well as new nanocomposite matrices of PVP/SiO2, which drastically change the release profile of the drug to a sustained delivery.

Collaboration


Dive into the Sofia Papadimitriou's collaboration.

Top Co-Authors

Avatar

Dimitrios N. Bikiaris

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

S. Sotiropoulos

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

G. Kokkinidis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Evangelos Karavas

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

A. Tegou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

E. Pavlidou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Valova

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

S. Armyanov

Bulgarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

George Z. Papageorgiou

Aristotle University of Thessaloniki

View shared research outputs
Researchain Logo
Decentralizing Knowledge