Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sofia Ramstedt is active.

Publication


Featured researches published by Sofia Ramstedt.


Nature | 2012

Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris.

Matthias Maercker; S. Mohamed; Wouter Vlemmings; Sofia Ramstedt; Martin A. T. Groenewegen; E. M. L. Humphreys; Franz Kerschbaum; Michael Lindqvist; Hans Olofsson; Claudia Paladini; Markus Wittkowski; I. de Gregorio-Monsalvo; L.-Å. Nyman

The asymptotic-giant-branch star R Sculptoris is surrounded by a detached shell of dust and gas. The shell originates from a thermal pulse during which the star underwent a brief period of increased mass loss. It has hitherto been impossible to constrain observationally the timescales and mass-loss properties during and after a thermal pulse—parameters that determine the lifetime of the asymptotic giant branch and the amount of elements returned by the star. Here we report observations of CO emission from the circumstellar envelope and shell around R Sculptoris with an angular resolution of 1.3″. What was previously thought to be only a thin, spherical shell with a clumpy structure is revealed to also contain a spiral structure. Spiral structures associated with circumstellar envelopes have been previously seen, leading to the conclusion that the systems must be binaries. Combining the observational data with hydrodynamic simulations, we conclude that R Sculptoris is a binary system that underwent a thermal pulse about 1,800 years ago, lasting approximately 200 years. About 3 × 10−3 solar masses of material were ejected at a velocity of 14.3 km s−1 and at a rate around 30 times higher than the pre-pulse mass-loss rate. This shows that about three times more mass was returned to the interstellar medium during and immediately after the pulse than previously thought.


Astronomy and Astrophysics | 2008

On the reliability of mass-loss-rate estimates for AGB stars

Sofia Ramstedt; Fredrik L. Schöier; Hans Olofsson; Adreas A. Lundgren

Context. In the recent literature there has been some doubt as to the reliability of CO multi-transitional line observations as a mass-loss-rate estimator for AGB stars. Aims. Using new well-calibr ...


Astronomy and Astrophysics | 2014

The (CO)-C-12/(CO)-C-13 ratio in AGB stars of different chemical type Connection to the C-12/C-13 ratio and the evolution along the AGB

Sofia Ramstedt; Hans Olofsson

Aims. The aim of this paper is to investigate the evolution of the C-12/C-13 ratio along the AGB through the circumstellar (CO)-C-12/(CO)-C-13 abundance ratio. This is the first time a sample including a significant number of M-and S-type stars is analysed together with a carbon-star sample of equal size, making it possible to investigate trends among the different types and establish evolutionary effects. Methods. The circumstellar (CO)-C-12/(CO)-C-13 abundance ratios are estimated through a detailed radiative transfer analysis of single-dish radio line emission observations. Several different transitions have been observed for each source to ensure that a large extent of the circumstellar envelope is probed and the radiative transfer model is well constrained. The radiative transfer model is based on the Monte Carlo method and has been benchmarked against a set of similar codes. It assumes that the radiation field is non-local and solves the statistical equilibrium equations in full non-local thermodynamic equilibrium. The energy balance equation, determining the gas temperature distribution, is solved self-consistently, and the effects of thermal dust radiation (as estimated from the spectral energy distribution) are taken into account. First, the (CO)-C-12 radiative transfer is solved, assuming an abundance (dependent on the chemical type of the star), to give the physical parameters of the gas, i.e. mass-loss rate. M. gas expansion velocity, v(e), and gas temperature distribution. Then, the (CO)-C-13 radiative transfer is solved using the results of the (CO)-C-12 model giving the (CO)-C-13 abundance. Finally, the (CO)-C-12/(CO)-C-13 abundance ratio is calculated. Results. The circumstellar (CO)-C-12/(CO)-C-13 abundance ratio differs between the three spectral types. This is consistent with what is expected from stellar evolutionary models assuming that the spectral types constitute an evolutionary sequence; however, this is the first time this has been shown observationally for a relatively large sample covering all three spectral types. The median value of the (CO)-C-13 abundance in the inner circumstellar envelope is 1.6 x 10(-5), 2.3 x 10(-5), and 3.0 x 10(-5) for the M-type. S-type, and carbon stars of the sample, respectively, corresponding to (CO)-C-12/(CO)-C-13 abundance ratios of 13, 26, and 34, respectively. The spread in the (CO)-C-13 abundance, quantified by the ratio between the 90th and 10th percentile, is 4, 3, and 15 for the M-type. S-type, and carbon stars, respectively. Interestingly, the abundance ratio spread of the carbon stars is much larger than for the M-and S-type stars, even when excluding J-type carbon stars, in line with what could be expected from evolution on the AGB. We find no correlation between the isotopologue ratio and the mass-loss rate, as would be expected if both increase as the star evolves.


Astronomy and Astrophysics | 2006

Mass-loss properties of S-stars on the AGB

Sofia Ramstedt; Fredrik L. Schöier; Hans Olofsson; Andreas A. Lundgren

We have used a detailed non-LTE radiative transfer code to model new APEX CO(J = 3 → 2) data, and existing CO radio line data, on a sample of 40 AGB S-stars. The derived mass-loss-rate distribution ...


Astronomy and Astrophysics | 2014

Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae

Taissa Danilovich; Per Bergman; Kay Justtanont; R. Lombaert; Matthias Maercker; Hans Olofsson; Sofia Ramstedt; P. Royer

Context. S-type AGB stars have a C/O ratio which suggests that they are transition objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such, their circumstellar compositions of gas and dust are thought to be sensitive to their precise C/O ratio, and it is therefore of particular interest to examine their circumstellar properties. Aims. We present new Herschel HIFI and PACS sub-millimetre and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances. Methods. We used radiative transfer codes to model the circumstellar dust and molecular line emission to determine circumstellar properties and molecular abundances. We assumed a spherically symmetric envelope formed by a constant mass-loss rate driven by an accelerating wind. Our model includes fully integrated H2O line cooling as part of the solution of the energy balance. Results. We detect circumstellar molecular lines from CO, H2O, SiO, HCN, and, for the first time in an S-type AGB star, NH3. The radiative transfer calculations result in an estimated mass-loss rate for W Aql of 4.0 x 10(-6) M-circle dot yr(-1) based on the (CO)-C-12 lines. The estimated (CO)-C-12/(CO)-C-13 ratio is 29, which is in line with ratios previously derived for S-type AGB stars. We find an H2O abundance of 1.5 x 10(-5), which is intermediate to the abundances expected for M and C stars, and an ortho/para ratio for H2O that is consistent with formation at warm temperatures. We find an HCN abundance of 3 x 10(-6), and, although no CN lines are detected using HIFI, we are able to put some constraints on the abundance, 6 x 10(-6), and distribution of CN in W Aqls circumstellar envelope using ground-based data. We find an SiO abundance of 3 x 10(-6), and an NH3 abundance of 1.7 x 10(-5), confined to a small envelope. If we include uncertainties in the adopted circumstellar model - in the adopted abundance distributions, etc. - the errors in the abundances are of the order of factors of a few. The data also suggest that, in terms of HCN, S-type and M-type AGB stars are similar, and in terms of H2O, S-type AGB stars are more like C-type than M-type AGB stars. We detect excess blue-shifted emission in several molecular lines, possibly due to an asymmetric outflow. Conclusions. The estimated abundances of circumstellar HCN, SiO and H2O place W Aql in between M-and C-type AGB stars, i.e., the abundances are consistent with an S-type classification.


Astronomy and Astrophysics | 2013

The wind of the M-type AGB star RT Virginis probed by VLTI/MIDI ⋆

Stéphane Sacuto; Sofia Ramstedt; Susanne Höfner; Hans Olofsson; Sara Bladh; Kjell Eriksson; Bernhard Aringer; Daniela Klotz; Matthias Maercker

Aims. We study the circumstellar environment of the M-type AGB star RT Vir using mid-infrared high spatial resolution observations from the ESO-VLTI focal instrument MIDI. The aim of this study is ...


Astronomy and Astrophysics | 2015

Dissecting the AGB star L-2 Puppis: a torus in the making

F. Lykou; Daniela Klotz; Claudia Paladini; J. Hron; Albert A. Zijlstra; J. Kluska; Barnaby Norris; Peter G. Tuthill; Sofia Ramstedt; E. Lagadec; Markus Wittkowski; Matthias Maercker; A. Mayer

Aims. The circumstellar environment of L-2 Pup, an oxygen-rich semiregular variable, was observed to understand the evolution of mass loss and the shaping of ejecta in the late stages of stellar evolution. Methods. High-angular resolution observations from a single 8 m telescope were obtained using aperture masking in the near-infrared (1.64, 2.30 and 3.74 mu m) on the NACO/VLT, both in imaging and polarimetric modes. Results. The aperture-masking images of L-2 Pup at 2.30 mu m show a resolved structure that resembles a toroidal structure with a major axis of similar to 140 milliarcseconds (mas) and an east-west orientation. Two clumps can be seen on either side of the star, similar to 65 mas from the star, beyond the edge of the circumstellar envelope (estimated diameter is similar to 27 mas), while a faint, hook-like structure appear toward the northeast. The patterns are visible both in the imaging and polarimetric mode, although the latter was only used to measure the total intensity (Stokes I). The overall shape of the structure is similar at the 3.74 mu m pseudo-continuum (dust emission), where the clumps appear to be embedded within a dark, dusty lane. The faint, hook-like patterns are also seen at this wavelength, extending northeast and southwest with the central, dark lane being an apparent axis of symmetry. We interpret the structure as a circumstellar torus with inner radius of 4.2 au. With a rotation velocity of 10 kms(-1) as suggested by the SiO maser profile, we estimate a stellar mass of 0.7 M-circle dot.


Astronomy and Astrophysics | 2015

ALMA view of the circumstellar environment of the post-common-envelope-evolution binary system HD 101584

Hans Olofsson; Wouter Vlemmings; Matthias Maercker; E. M. L. Humphreys; Michael Lindqvist; L.-Å. Nyman; Sofia Ramstedt

Aims. We study the circumstellar evolution of the binary HD 101584, consisting of a post-AGB star and a low-mass companion, which is most likely a post-common-envelope-evolution system. Methods. We used ALMA observations of the (CO)-C-12, (CO)-C-13, and (CO)-O-18 J = 2-1 lines and the 1.3 mm continuum to determine the morphology, kinematics, masses, and energetics of the circumstellar environment. Results. The circumstellar medium has a bipolar hour-glass structure, seen almost pole-on, formed by an energetic jet, approximate to 150 km s(-1). We conjecture that the circumstellar morphology is related to an event that took place approximate to 500 yr ago, possibly a capture event where the companion spiraled in towards the AGB star. However, the kinetic energy of the accelerated gas exceeds the released orbital energy, and, taking into account the expected energy transfer efficiency of the process, the observed phenomenon does not match current common-envelope scenarios. This suggests that another process must augment, or even dominate, the ejection process. A significant amount of material resides in an unresolved region, presumably in the equatorial plane of the binary system.


Astronomy and Astrophysics | 2015

Resolving the stellar activity of the Mira AB binary with ALMA

Wouter Vlemmings; Sofia Ramstedt; Eamon O Gorman; E. M. L. Humphreys; Markus Wittkowski; Alain Baudry; M. Karovska

Aims. We present the size, shape, and flux densities at millimeter continuum wavelengths, based on ALMA science verification observations in Band 3 (similar to 94.6 GHz) and Band 6 (similar to 228.7 GHz), from the binary Mira A (o Ceti) and Mira B. Methods. The Mira AB system was observed with ALMA at a spatial resolution down to similar to 25 mas. The extended atmosphere of Mira A and the wind around Mira B sources were resolved, and we derived the sizes of Mira A and of the ionized region around Mira B. The spectral indices within Band 3 (between 89-100 GHz) and between Bands 3 and 6 were also derived. Results. The spectral index of Mira A is found to change from 1.71 +/- 0.05 within Band 3 to 1.54 +/- 0.04 between Bands 3 and 6. The spectral index of Mira B is 1.3 +/- 0.2 in Band 3, in good agreement with measurements at longer wavelengths; however, it rises to 1.72 +/- 0.11 between the bands. For the first time, the extended atmosphere of a star is resolved at these frequencies, and for Mira A the diameter is similar to 3.8 x 3.2 AU in Band 3 (with brightness temperature T-b similar to 5300 K) and similar to 4.0 x 3.6 AU in Band 6 (T-b similar to 2500 K). Additionally, a bright hotspot similar to 0.4 AU, with T-b similar to 10 000 K, is found on the stellar disk of Mira A. The size of the ionized region around the accretion disk of Mira B is found to be similar to 2.4 AU. Conclusions. The emission around Mira B is consistent with emission from a partially ionized wind of gravitationally bound material from Mira A close to the accretion disk of Mira B. The Mira A atmosphere does not fully match predictions with brightness temperatures in Band 3 significantly higher than expected, potentially owing to shock heating. The hotspot is very likely due to magnetic activity and could be related to the previously observed X-ray flare of Mira A.


Astronomy and Astrophysics | 2013

ALMA observations of the variable 12CO/13CO ratio around the asymptotic giant branch star R Sculptoris

Wouter Vlemmings; Matthias Maercker; Michael Lindqvist; S. Mohamed; Hans Olofsson; Sofia Ramstedt; M. Brunner; Martin A. T. Groenewegen; Franz Kerschbaum; Markus Wittkowski

The 12CO/13CO ratio is often used as a measure of the 12C/13C ratio in the circumstellar environment, carrying important information about the stellar nucleosynthesis. External processes can change the 12CO and 13CO abundances, and spatially resolved studies of the 12CO/13CO ratio are needed to quantify the effect of these processes on the globally determined values. Additionally, such studies provide important information on the conditions in the circumstellar environment. The detached-shell source R Scl, displaying CO emission from recent mass loss, in a binary-induced spiral structure as well as in a clumpy shell produced during a thermal pulse, provides a unique laboratory for studying the differences in CO isotope abundances throughout its recent evolution. We observed both the 12CO(J = 3 → 2) and the 13CO(J = 3 → 2) line using ALMA. We find significant variations in the 12CO/13CO intensity ratios and consequently in the abundance ratios. The average CO isotope abundance ratio is at least a factor three lower in the shell (~19) than that in the present-day (≤300 years) mass loss (>60). Additionally, variations in the ratio of more than an order of magnitude are found in the shell itself. We attribute these variations to the competition between selective dissociation and isotope fractionation in the shell, of which large parts cannot be warmer than ~35 K. However, we also find that the 12CO/13CO ratio in the present-day mass loss is significantly higher than the 12C/13C ratio determined in the stellar photosphere from molecular tracers (~19). The origin of this discrepancy is still unclear, but we speculate that it is due to an embedded source of UV-radiation that is primarily photo-dissociating 13CO. This radiation source could be the hitherto hidden companion. Alternatively, the UV-radiation could originate from an active chromosphere of R Scl itself. Our results indicate that caution should be taken when directly relating the 12CO/13CO intensity and 12C/13C abundance ratios for specific asymptotic giant branch stars, in particular binaries or stars that display signs of chromospheric stellar activity.

Collaboration


Dive into the Sofia Ramstedt's collaboration.

Top Co-Authors

Avatar

Hans Olofsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Matthias Maercker

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Wouter Vlemmings

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Markus Wittkowski

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

S. Mohamed

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar

Michael Lindqvist

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

E. M. L. Humphreys

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Claudia Paladini

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge