Sofie Ashford
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sofie Ashford.
The Lancet | 2008
Manjinder S. Sandhu; Dawn M. Waterworth; Sally L Debenham; Eleanor Wheeler; Konstantinos A. Papadakis; Jing Hua Zhao; Kijoung Song; Xin H. Yuan; Toby Johnson; Sofie Ashford; Michael Inouye; Robert Luben; Matthew Sims; David Hadley; Wendy L. McArdle; Philip J. Barter; Y. Antero Kesäniemi; Robert W. Mahley; Ruth McPherson; Scott M. Grundy; Sheila Bingham; Kay-Tee Khaw; Ruth J. F. Loos; Gérard Waeber; Inês Barroso; David P. Strachan; Panagiotis Deloukas; Peter Vollenweider; Nicholas J. Wareham; Vincent Mooser
Summary Background LDL cholesterol has a causal role in the development of cardiovascular disease. Improved understanding of the biological mechanisms that underlie the metabolism and regulation of LDL cholesterol might help to identify novel therapeutic targets. We therefore did a genome-wide association study of LDL-cholesterol concentrations. Methods We used genome-wide association data from up to 11 685 participants with measures of circulating LDL-cholesterol concentrations across five studies, including data for 293 461 autosomal single nucleotide polymorphisms (SNPs) with a minor allele frequency of 5% or more that passed our quality control criteria. We also used data from a second genome-wide array in up to 4337 participants from three of these five studies, with data for 290 140 SNPs. We did replication studies in two independent populations consisting of up to 4979 participants. Statistical approaches, including meta-analysis and linkage disequilibrium plots, were used to refine association signals; we analysed pooled data from all seven populations to determine the effect of each SNP on variations in circulating LDL-cholesterol concentrations. Findings In our initial scan, we found two SNPs (rs599839 [p=1·7×10−15] and rs4970834 [p=3·0×10−11]) that showed genome-wide statistical association with LDL cholesterol at chromosomal locus 1p13.3. The second genome screen found a third statistically associated SNP at the same locus (rs646776 [p=4·3×10−9]). Meta-analysis of data from all studies showed an association of SNPs rs599839 (combined p=1·2×10−33) and rs646776 (p=4·8×10−20) with LDL-cholesterol concentrations. SNPs rs599839 and rs646776 both explained around 1% of the variation in circulating LDL-cholesterol concentrations and were associated with about 15% of an SD change in LDL cholesterol per allele, assuming an SD of 1 mmol/L. Interpretation We found evidence for a novel locus for LDL cholesterol on chromosome 1p13.3. These results potentially provide insight into the biological mechanisms that underlie the regulation of LDL cholesterol and might help in the discovery of novel therapeutic targets for cardiovascular disease.
Cell | 2013
Laura R. Pearce; Neli Atanassova; Matthew C. Banton; Bill Bottomley; Agatha A. van der Klaauw; Jean-Pierre Revelli; Audrey E. Hendricks; Julia M. Keogh; Elana Henning; Deon Doree; Sabrina Jeter-Jones; Sumedha Garg; Elena G. Bochukova; Rebecca Bounds; Sofie Ashford; Emma Gayton; Peter C. Hindmarsh; Julian Shield; Elizabeth Crowne; David Barford; Nicholas J. Wareham; Stephen O’Rahilly; Michael P. Murphy; David R. Powell; Inês Barroso; I. Sadaf Farooqi
Summary Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEK-ERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes. PaperFlick
Cell | 2016
Lu Chen; Bing Ge; Francesco Paolo Casale; Louella Vasquez; Tony Kwan; Diego Garrido-Martín; Stephen Watt; Ying Yan; Kousik Kundu; Simone Ecker; Avik Datta; David C. Richardson; Frances Burden; Daniel Mead; Alice L. Mann; José María Fernández; Sophia Rowlston; Steven P. Wilder; Samantha Farrow; Xiaojian Shao; John J. Lambourne; Adriana Redensek; Cornelis A. Albers; Vyacheslav Amstislavskiy; Sofie Ashford; Kim Berentsen; Lorenzo Bomba; Guillaume Bourque; David Bujold; Stephan Busche
Summary Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.
Nature | 2017
Helena Kilpinen; Angela Goncalves; Andreas Leha; Vackar Afzal; Kaur Alasoo; Sofie Ashford; Sendu Bala; Dalila Bensaddek; Francesco Paolo Casale; Oliver J. Culley; Petr Danecek; Adam Faulconbridge; Peter W. Harrison; Annie Kathuria; Davis J. McCarthy; Shane McCarthy; Ruta Meleckyte; Yasin Memari; Nathalie Moens; Filipa Soares; Alice L. Mann; Ian Streeter; Chukwuma A. Agu; Alex Alderton; Rachel Nelson; Sarah Harper; Minal Patel; Alistair White; Sharad R Patel; Laura Clarke
Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5–46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
Blood | 2016
Simon Stritt; Paquita Nurden; Ernest Turro; Daniel Greene; Sjoert B. G. Jansen; Sarah K. Westbury; Romina Petersen; William Astle; Sandrine Marlin; Tadbir K. Bariana; Myrto Kostadima; Claire Lentaigne; Stephanie Maiwald; Sofia Papadia; Anne M. Kelly; Jonathan Stephens; Christopher J. Penkett; Sofie Ashford; Salih Tuna; Steve Austin; Tamam Bakchoul; Peter William Collins; Rémi Favier; Michele P. Lambert; Mary Mathias; Carolyn M. Millar; Rutendo Mapeta; David J. Perry; Sol Schulman; Ilenia Simeoni
Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MKs). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping, and similarity regression. We describe 2 unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was linked to reduced proplatelet formation from cultured MKs, cell clustering, and abnormal cortical filamentous actin. Similarly, in platelets, there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Overexpression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insight into the autoregulation of DIAPH1 activity.
Science Translational Medicine | 2016
Ernest Turro; Daniel Greene; Anouck Wijgaerts; Chantal Thys; Claire Lentaigne; Tadbir K. Bariana; Sarah K. Westbury; Anne M. Kelly; Dominik Selleslag; Jonathan Stephens; Sofia Papadia; Ilenia Simeoni; Christopher J. Penkett; Sofie Ashford; Antony P. Attwood; Steve Austin; Tamam Bakchoul; Peter William Collins; Sri V.V. Deevi; Rémi Favier; Myrto Kostadima; Michele P. Lambert; Mary Mathias; Carolyn M. Millar; Kathelijne Peerlinck; David J. Perry; Sol Schulman; Deborah Whitehorn; Christine Wittevrongel; Marc De Maeyer
E527K hyperactive SRC results in megakaryocytes with increased podosome formation, thrombocytopenia, myelofibrosis, bleeding, and bone pathologies. SRC shows its stripes The nonreceptor tyrosine kinase SRC is a proto-oncogene that has been associated with cancer progression. Now, Turro et al. find a gain-of-function mutation in SRC in nine patients with myelofibrosis, bleeding, and bone disorders. This mutation prevented SRC from inhibiting itself, and the overactive SRC resulted in enhanced tyrosine phosphorylation in a zebrafish model as well as in patient-derived cells. In patients with myelofibrosis, this SRC mutation was associated with increased outgrowth of myeloid and megakaryocyte colonies, with abnormal platelet production, which could be rescued by SRC kinase inhibition. These findings may be important for understanding the severe bleeding in cancer patients treated with Src family kinase inhibitors. The Src family kinase (SFK) member SRC is a major target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC’s self-inhibitory capacity, which we confirmed with in vitro studies showing increased SRC kinase activity and enhanced Tyr419 phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients’ platelets, resulting in enhanced overall tyrosine phosphorylation. Patients with myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of α-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC form MKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC–positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients’ blood and bone phenotypes. Similar studies of platelets and MKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors.
Scientific Reports | 2017
Audrey E. Hendricks; Elena G. Bochukova; Gaëlle Marenne; Julia M. Keogh; Neli Atanassova; Rebecca Bounds; Eleanor Wheeler; Vanisha Mistry; Elana Henning; Antje Körner; Dawn Muddyman; Shane McCarthy; Anke Hinney; Johannes Hebebrand; Robert A. Scott; Claudia Langenberg; Nicholas J. Wareham; Praveen Surendran; Joanna M. M. Howson; Adam S. Butterworth; John Danesh; Børge G. Nordestgaard; Sune F. Nielsen; Shoaib Afzal; Sofia Papadia; Sofie Ashford; Sumedha Garg; Glenn L. Millhauser; Rafael Palomino; Alexandra Kwasniewska
Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF~0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 × 10−3), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies.
Nature Communications | 2017
Romina Petersen; John J. Lambourne; Biola M. Javierre; Luigi Grassi; Roman Kreuzhuber; Dace Ruklisa; Isabel M. Rosa; Ana R. Tomé; Heather Elding; Johanna P. van Geffen; Tao Jiang; Samantha Farrow; Jonathan Cairns; Abeer M. Al-Subaie; Sofie Ashford; Antony P. Attwood; Joana Batista; Heleen Bouman; Frances Burden; Fizzah Choudry; Laura Clarke; Paul Flicek; Stephen F. Garner; Matthias Haimel; Carly Kempster; Vasileios Ladopoulos; An-Sofie Lenaerts; Paulina M. Materek; Harriet McKinney; Stuart Meacham
Linking non-coding genetic variants associated with the risk of diseases or disease-relevant traits to target genes is a crucial step to realize GWAS potential in the introduction of precision medicine. Here we set out to determine the mechanisms underpinning variant association with platelet quantitative traits using cell type-matched epigenomic data and promoter long-range interactions. We identify potential regulatory functions for 423 of 565 (75%) non-coding variants associated with platelet traits and we demonstrate, through ex vivo and proof of principle genome editing validation, that variants in super enhancers play an important role in controlling archetypical platelet functions.
Nature | 2017
Helena Kilpinen; Angela Goncalves; Andreas Leha; Vackar Afzal; Kaur Alasoo; Sofie Ashford; Sendu Bala; Dalila Bensaddek; Francesco Paolo Casale; Oliver J. Culley; Petr Danecek; Adam Faulconbridge; Peter W. Harrison; Annie Kathuria; Davis J. McCarthy; Shane McCarthy; Ruta Meleckyte; Yasin Memari; Nathalie Moens; Filipa Soares; Alice L. Mann; Ian Streeter; Chukwuma A. Agu; Alex Alderton; Rachel Nelson; Sarah Harper; Minal Patel; Alistair White; Sharad R Patel; Laura Clarke
This corrects the article DOI: 10.1038/nature22403.
International journal of molecular epidemiology and genetics | 2011
Sally L. Ricketts; Katrijn L. Rensing; Jeffrey M P Holly; Li Chen; Elizabeth H. Young; Robert Luben; Sofie Ashford; Kijoung Song; Xin Yuan; Abbas Dehghan; Benjamin J. Wright; Dawn M. Waterworth; Vincent Mooser; Gérard Waeber; Peter Vollenweider; Stephen E. Epstein; Mary Susan Burnett; Joseph M. Devaney; Hakon Hakonarson; Daniel J. Rader; Muredach P. Reilly; John Danesh; Simon G. Thompson; Alison M. Dunning; Cornelia M. van Duijn; Nilesh J. Samani; Ruth McPherson; Nicholas J. Wareham; Kay-Tee Khaw; S. Matthijs Boekholdt