Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sofie Thijs is active.

Publication


Featured researches published by Sofie Thijs.


Frontiers in Microbiology | 2016

Towards an Enhanced Understanding of Plant-Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism.

Sofie Thijs; Wouter Sillen; Francois Rineau; Nele Weyens; Jaco Vangronsveld

Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant–microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together) are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates) over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP) microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant–microbial functions, and facilitate translation to more effective, and predictable phytotechnologies.


Annals of Botany | 2012

Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth

Tony Remans; Sofie Thijs; Sascha Truyens; Nele Weyens; Kerim Schellingen; Els Keunen; Heidi Gielen; Ann Cuypers; Jaco Vangronsveld

BACKGROUND AND SCOPE Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored. METHODS Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants. KEY RESULTS The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium. CONCLUSIONS Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to influence root development and increase plant stress tolerance, which should lead to more optimal root systems for application in phytoremediation or safer biomass production.


Plant and Soil | 2014

Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium

Sofie Thijs; Pieter van Dillewijn; Wouter Sillen; Sascha Truyens; Michelle Holtappels; J. D’Haen; Robert Carleer; Nele Weyens; Marcel Ameloot; Juan-Luis Ramos; Jaco Vangronsveld

Background and aimsNumerous microorganisms have been isolated from trinitrotoluene (TNT)-contaminated soils, however TNT tends to persist, indicating that the microbial biomass or activity is insufficient for degradation. Deep-rooting trees at military sites have been found to take-up contaminants from groundwater, and the extensive root and endosphere provide ideal niches for microbial TNT-transformations.MethodsWe characterised the rhizosphere, root endosphere and endo-phyllosphere bacteria of Acer pseudoplatanus growing at a historically TNT-contaminated location, using 16S rRNA gene fingerprinting, bacteria isolation, oxidoreductase gene-cloning, in planta growth-promotion (PGP) tests, inoculation, plant physiology measurements and microscopy.ResultsBased on terminal-restriction-fragment-length-polymorphism analysis, bulk soil and rhizosphere samples were highly clustered. Proteo- and Actinobacteria dominated the rhizosphere and root endosphere, whereas Alphaproteobacteria were more abundant in shoots and Actinobacteria in leaves. We isolated multiple PGP-bacteria and cloned 5 flavin-oxidoreductases belonging to the Old Yellow Enzyme family involved in TNT-reduction from 3 Pseudomonas spp., the leaf symbiont Stenotrophomonas chelatiphaga and the root endophyte Variovorax ginsengisola.ConclusionsThe inoculation with a selection of these strains, consortium CAP9, which combines efficient TNT-transformation capabilities with beneficial PGP-properties, has the ability to detoxify TNT in the bent grass (Agrostis capillaris) rhizosphere, stimulate plant growth and improve plant health under TNT stress.


Microbial Biotechnology | 2014

Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil.

Sofie Thijs; Nele Weyens; Wouter Sillen; Panagiotis Gkorezis; Robert Carleer; Jaco Vangronsveld

The presence of explosives in soils and the interaction with drought stress and nutrient limitation are among the environmental factors that severely affect plant growth on military soils. In this study, we seek to isolate and identify the cultivable bacteria of a 2,4‐dinitrotoluene (DNT) contaminated soil (DS) and an adjacent grassland soil (GS) of a military training area aiming to isolate new plant growth‐promoting (PGP) and 2,4‐DNT‐degrading strains. Metabolic profiling revealed disturbances in Ecocarbon use in the bare DS; isolation of cultivable strains revealed a lower colony‐forming‐unit count and a less diverse community associated with DS in comparison with GS. New 2,4‐DNT‐tolerant strains were identified by selective enrichments, which were further characterized by auxanography for 2,4‐DNT use, resistance to drought stress, cold, nutrient starvation and PGP features. By selecting multiple beneficial PGP and abiotic stress‐resistant strains, efficient 2,4‐DNT‐degrading consortia were composed. After inoculation, consortium UHasselt Sofie 3 with seven members belonging to Burkholderia, Variovorax, Bacillus, Pseudomonas and Ralstonia species was capable to successfully enhance root length of Arabidopsis under 2,4‐DNT stress. After 9 days, doubling of main root length was observed. Our results indicate that beneficial bacteria inhabiting a disturbed environment have the potential to improve plant growth and alleviate 2,4‐DNT stress.


Frontiers in Microbiology | 2016

Exploitation of Endophytic Bacteria to Enhance the Phytoremediation Potential of the Wetland Helophyte Juncus acutus

Evdokia Syranidou; Stavros Christofilopoulos; Georgia Gkavrou; Sofie Thijs; Nele Weyens; Jaco Vangronsveld; Nicolas Kalogerakis

This study investigated the potential of indigenous endophytic bacteria to improve the efficiency of the wetland helophyte Juncus acutus to deal with a mixed pollution consisting of emerging organic contaminants (EOCs) and metals. The beneficial effect of bioaugmentation with selected endophytic bacteria was more prominent in case of high contamination: most of the inoculated plants (especially those inoculated with the mixed culture) removed higher percentages of organics and metals from the liquid phase in shorter times compared to the non-inoculated plants without exhibiting significant oxidative stress. When exposed to the lower concentrations, the tailored mixed culture enhanced the performance of the plants to decrease the organics and metals from the water. The composition of the root endophytic community changed in response to increased levels of contaminants while the inoculated bacteria did not modify the community structure. Our results indicate that the synergistic relationships between endophytes and the macrophyte enhance plants’ performance and may be exploited in constructed wetlands treating water with mixed contaminations. Taking into account that the concentrations of EOCs used in this study are much higher than the average contents of typical wastewaters, we can conclude that the macrophyte J. acutus with the aid of a mixed culture of tailored endophytic bacteria represents a suitable environmentally friendly alternative for treating pharmaceuticals and metals.


International Journal of Molecular Sciences | 2015

The Role of Plant–Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants

Nele Weyens; Sofie Thijs; Robert Popek; Nele Witters; Arkadiusz Przybysz; Jordan Espenshade; Helena Gawrońska; Jaco Vangronsveld; S W Gawronski

Since air pollution has been linked to a plethora of human health problems, strategies to improve air quality are indispensable. Despite the complexity in composition of air pollution, phytoremediation was shown to be effective in cleaning air. Plants are known to scavenge significant amounts of air pollutants on their aboveground plant parts. Leaf fall and runoff lead to transfer of (part of) the adsorbed pollutants to the soil and rhizosphere below. After uptake in the roots and leaves, plants can metabolize, sequestrate and/or excrete air pollutants. In addition, plant-associated microorganisms play an important role by degrading, detoxifying or sequestrating the pollutants and by promoting plant growth. In this review, an overview of the available knowledge about the role and potential of plant–microbe interactions to improve indoor and outdoor air quality is provided. Most importantly, common air pollutants (particulate matter, volatile organic compounds and inorganic air pollutants) and their toxicity are described. For each of these pollutant types, a concise overview of the specific contributions of the plant and its microbiome is presented. To conclude, the state of the art and its related future challenges are presented.


Plant Biology | 2016

Cadmium-induced and trans-generational changes in the cultivable and total seed endophytic community of Arabidopsis thaliana.

Sascha Truyens; Bram Beckers; Sofie Thijs; Nele Weyens; Ann Cuypers; Jaco Vangronsveld

Trans-generational adaptation is important to respond rapidly to environmental challenges and increase overall plant fitness. Besides well-known mechanisms such as epigenetic modifications, vertically transmitted endophytic bacteria might contribute to this process. The cultivable and total endophytic communities of several generations of Arabidopsis thaliana seeds harvested from plants exposed to cadmium (Cd) or not exposed were investigated. The diversity and richness of the seed endophytic community decreased with an increasing number of generations. Aeromicrobium and Pseudonocardia were identified as indicator species in seeds from Cd-exposed plants, while Rhizobium was abundantly present in both seed types. Remarkably, Rhizobium was the only genus that was consistently detected in seeds of all generations, which suggests that the phenotypic characteristics were more important as selection criteria for which bacteria are transferred to the next plant generation than the actual genera. Production of IAA was an important trait for endophytes from both seed types, while ACC deaminase activity and Cd tolerance were mainly associated with seed endophytes from Cd-exposed plants. Understanding how different factors influence the seed endophytic community can help us to improve seed quality and plant growth through different biotechnological applications.


Genome Announcements | 2014

Draft Genome Sequence of Raoultella ornithinolytica TNT, a Trinitrotoluene-Denitrating and Plant Growth-Promoting Strain Isolated from Explosive-Contaminated Soil.

Sofie Thijs; J. Van Hamme; Panos Gkorezis; Francois Rineau; Nele Weyens; Jaco Vangronsveld

ABSTRACT We report the draft genome of Raoultella ornithinolytica TNT, a Gram-negative bacterium of the Enterobacteriaceae isolated from military soil in Belgium. Strain TNT uses nitrite released from trinitrotoluene (TNT) for growth and is a potent plant growth promoter. An analysis of its 5.6-Mb draft genome will bring insights into TNT degradation-reinforcing bioremediation applications.


Frontiers in Microbiology | 2016

Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies

Bram Beckers; Michiel Op De Beeck; Sofie Thijs; Sascha Truyens; Nele Weyens; Wout Boerjan; Jaco Vangronsveld

Next-generation sequencing technologies have revolutionized the methods for studying microbial ecology by enabling high-resolution community profiling. However, the use of these technologies in unraveling the plant microbiome remains challenging. Many bacterial 16S rDNA primer pairs also exhibit high affinity for non-target DNA such as plastid (mostly chloroplast) DNA and mitochondrial DNA. Therefore, we experimentally tested a series of commonly used primers for the analysis of plant-associated bacterial communities using 454 pyrosequencing. We evaluated the performance of all selected primer pairs in the study of the bacterial microbiomes present in the rhizosphere soil, root, stem and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) based on (a) co-amplification of non-target DNA, (b) low amplification efficiency for pure chloroplast DNA (real-time PCR), (c) high retrieval of bacterial 16S rDNA, (d) high operational taxonomic unit (OTU) richness and Inverse Simpson diversity and (e) taxonomic assignment of reads. Results indicate that experimental evaluation of primers provide valuable information that could contribute in the selection of suitable primer pairs for 16S rDNA metabarcoding studies in plant-microbiota research. Furthermore, we show that primer pair 799F-1391R outperforms all other primer pairs in our study in the elimination of non-target DNA and retrieval of bacterial OTUs.


Plant and Soil | 2018

Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues

Ariadna S. Sánchez-López; Sofie Thijs; Bram Beckers; Ma. del Carmen A. González-Chávez; Nele Weyens; Rogelio Carrillo-González; Jaco Vangronsveld

AimsWe investigated the possible transgenerational transfer of bacterial seed endophytes across three consecutive seed generations of Crotalaria pumila growing on a metal mining site in Mexico.MethodsSeeds were collected during three successive years in the semi-arid region of Zimapan, Mexico. Total communities of seed endophytes were investigated using DNA extraction from surface sterilized seeds and 454 pyrosequencing of the V5-V7 hypervariable regions of the 16S rRNA gene.ResultsThe communities consisted of an average of 75 operational taxonomic units (OTUs); richness and diversity did not change across years. Methylobacterium, Staphylococcus, Corynebacterium, Propionibacterium and eight other OTUs constituted >60% of the community in each generation. The microbiome was dominated by Methylobacterium (present in >80% of samples). Functions associated with the microbiome were C and N fixation, oxidative phosphorylation and photosynthesis activity.ConclusionsThe bacterial endophytic communities were similar across three consecutive seed generations. Among the core microbiome Methylobacterium strains were the most abundant and they can contribute to nutrient acquisition, plant growth promotion and stress resilience to their host in metal contaminated mine residues. Identification of the seed microbiome of C. pumila may lead to novel and more efficient inoculants for microbe-assisted phytoremediation.

Collaboration


Dive into the Sofie Thijs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge