Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sofie V. Hellsten is active.

Publication


Featured researches published by Sofie V. Hellsten.


Journal of Molecular Biology | 2015

Transport of L-glutamine, L-alanine, L-arginine and L-histidine by the neuron-specific Slc38a8 (SNAT8) in CNS

Maria Hägglund; Sofie V. Hellsten; Sonchita Bagchi; Gaëtan Philippot; Erik Löfqvist; Victor C. Nilsson; Ingrid Almkvist; Edvin Karlsson; Smitha Sreedharan; Atieh Tafreshiha; Robert Fredriksson

Glutamine transporters are important for regulating levels of glutamate and GABA in the brain. To date, six members of the SLC38 family (SNATs) have been characterized and functionally subdivided them into System A (SNAT1, SNAT2 and SNAT4) and System N (SNAT3, SNAT5 and SNAT7). Here we present the first functional characterization of SLC38A8, one of the previous orphan transporters from the family, and we suggest that the encoded protein should be named SNAT8 to adhere with the SNAT nomenclature. We show that SLC38A8 has preference for transporting L-glutamine, L-alanine, L-arginine, L-histidine and L-aspartate using a Na+-dependent transport mechanism and that the functional characteristics of SNAT8 have highest similarity to the known System A transporters. We also provide a comprehensive central nervous system expression profile in mouse brain for the Slc38a8 gene and the SNAT8 protein. We show that Slc38a8 (SNAT8) is expressed in all neurons, both excitatory and inhibitory, in mouse brain using in situ hybridization and immunohistochemistry. Furthermore, proximity ligation assay shows highly similar subcellular expression of SNAT7 and SNAT8. In conclusion, the neuronal SLC38A8 has a broad amino acid transport profile and is the first identified neuronal System A transporter. This suggests a key role of SNAT8 in the glutamine/glutamate (GABA) cycle in the brain.


PLOS ONE | 2013

B0AT2 (SLC6A15) Is Localized to Neurons and Astrocytes, and Is Involved in Mediating the Effect of Leucine in the Brain

Maria Hägglund; Sahar Roshanbin; Erik Löfqvist; Sofie V. Hellsten; Victor C. Nilsson; Aniruddha Todkar; Yinan Zhu; Olga Stephansson; Jana Drgonova; George R. Uhl; Helgi B. Schiöth; Robert Fredriksson

The B0AT2 protein is a product of the SLC6A15 gene belonging to the SLC6 subfamily and has been shown to be a transporter of essential branched-chain amino acids. We aimed to further characterize the B0AT2 transporter in CNS, and to use Slc6a15 knock out (KO) mice to investigate whether B0AT2 is important for mediating the anorexigenic effect of leucine. We used the Slc6a15 KO mice to investigate the role of B0AT2 in brain in response to leucine and in particular the effect on food intake. Slc6a15 KO mice show lower reduction of food intake as well as lower neuronal activation in the ventromedial hypothalamic nucleus (VMH) in response to leucine injections compared to wild type mice. We also used RT-PCR on rat tissues, in situ hybridization and immunohistochemistry on mouse CNS tissues to document in detail the distribution of SLC6A15 on gene and protein levels. We showed that B0AT2 immunoreactivity is mainly neuronal, including localization in many GABAergic neurons and spinal cord motor neurons. B0AT2 immunoreactivity was also found in astrocytes close to ventricles, and co-localized with cytokeratin and diazepam binding inhibitor (DBI) in epithelial cells of the choroid plexus. The data suggest that B0AT2 play a role in leucine homeostasis in the brain.


Brain Research | 2014

PAT4 is abundantly expressed in excitatory and inhibitory neurons as well as epithelial cells.

Sahar Roshanbin; Sofie V. Hellsten; Atieh Tafreshiha; Yinan Zhu; Amanda Raine; Robert Fredriksson

PAT4, the fourth member of the SLC36/proton dependent amino acid transporter (PAT) family, is a high-affinity, low capacity electroneutral transporter of neutral amino acids like proline and tryptophan. It has also been associated with the function of mTORC1, a complex in the mammalian target of rapamycin (mTOR) pathway. We performed in situ hybridization and immunohistological analysis to determine the expression profile of PAT4, as well as an RT-PCR study on tissue from mice exposed to leucine. We performed a phylogenetic analysis to determine the evolutionary origin of PAT4. The in situ hybridization and the immunohistochemistry on mouse brain sections and hypothalamic cells showed abundant PAT4 expression in the mouse brain intracellularly in both inhibitory and excitatory neurons, partially co-localizing with lysosomal markers and epithelial cells lining the ventricles. Its location in epithelial cells around the ventricles indicates a transport of substrates across the blood brain barrier. Phylogenetic analysis showed that PAT4 belongs to an evolutionary old family most likely predating animals, and PAT4 is the oldest member of that family.


BMC Neuroscience | 2013

Characterization of the transporterB0AT3 (Slc6a17) in the rodent central nervous system

Maria Hägglund; Sofie V. Hellsten; Sonchita Bagchi; Anna Ljungdahl; Victor C. Nilsson; Sonja Winnergren; Olga Stephansson; Juris Rumaks; Simons Svirskis; Vija Klusa; Helgi B. Schiöth; Robert Fredriksson

BackgroundThe vesicular B0AT3 transporter (SLC6A17), one of the members of the SLC6 family, is a transporter for neutral amino acids and is exclusively expressed in brain. Here we provide a comprehensive expression profile of B0AT3 in mouse brain using in situ hybridization and immunohistochemistry.ResultsWe confirmed previous expression data from rat brain and used a novel custom made antibody to obtain detailed co-labelling with several cell type specific markers. B0AT3 was highly expressed in both inhibitory and excitatory neurons. The B0AT3 expression was highly overlapping with those of vesicular glutamate transporter 2 (VGLUT2) and vesicular glutamate transporter 1 (VGLUT1). We also show here that Slc6a17mRNA is up-regulated in animals subjected to short term food deprivation as well as animals treated with the serotonin reuptake inhibitor fluoxetine and the dopamine/noradrenaline reuptake inhibitor bupropion.ConclusionsThis suggests that the B0AT3 transporter have a role in regulation of monoaminergic as well as glutamatergic synapses.


Journal of Molecular Neuroscience | 2017

The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake

Emelie Perland; Sofie V. Hellsten; Emilia Lekholm; Mikaela M. Eriksson; Vasiliki Arapi; Robert Fredriksson

Membrane-bound solute carriers (SLCs) are essential as they maintain several physiological functions, such as nutrient uptake, ion transport and waste removal. The SLC family comprise about 400 transporters, and we have identified two new putative family members, major facilitator superfamily domain containing 1 (MFSD1) and 3 (MFSD3). They cluster phylogenetically with SLCs of MFS type, and both proteins are conserved in chordates, while MFSD1 is also found in fruit fly. Based on homology modelling, we predict 12 transmembrane regions, a common feature for MFS transporters. The genes are expressed in abundance in mice, with specific protein staining along the plasma membrane in neurons. Depriving mouse embryonic primary cortex cells of amino acids resulted in upregulation of Mfsd1, whereas Mfsd3 is unaltered. Furthermore, in vivo, Mfsd1 and Mfsd3 are downregulated in anterior brain sections in mice subjected to starvation, while upregulated specifically in brainstem. Mfsd3 is also attenuated in cerebellum after starvation. In mice raised on high-fat diet, Mfsd1 was specifically downregulated in brainstem and hypothalamus, while Mfsd3 was reduced consistently throughout the brain.


FEBS Open Bio | 2017

The neuronal and astrocytic protein SLC38A10 transports glutamine, glutamate, and aspartate, suggesting a role in neurotransmission

Sofie V. Hellsten; Maria Hägglund; Mikaela M. Eriksson; Robert Fredriksson

In brain cells, glutamine transporters are vital to monitor and control the levels of glutamate and GABA. There are 11 members of the SLC38 family of amino acid transporters of which eight have been functionally characterized. Here, we report the first histological and functional characterization of the previously orphan member, SLC38A10. We used pairwise global sequence alignments to determine the sequence identity between the SLC38 family members. SLC38A10 was found to share 20–25% transmembrane sequence identity with several family members, and was predicted to have 11 transmembrane helices. SLC38A10 immunostaining was abundant in mouse brain using a custom‐made anti‐SLC38A10 antibody and colocalization of SLC38A10 immunoreactivity with markers for neurons and astrocytes was detected. Using Xenopus laevis oocytes overexpressing SLC38A10, we show that SLC38A10 mediates bidirectional transport of l‐glutamine, l‐alanine, l‐glutamate, and d‐aspartate, and efflux of l‐serine. This profile mostly resembles system A members of the SLC38 family. In conclusion, the bidirectional transport of glutamine, glutamate, and aspartate by SLC38A10, and the immunostaining detected in neurons and astrocytes, suggest that SLC38A10 plays a role in pathways involved in neurotransmission.


FEBS Open Bio | 2017

The gene expression of numerous SLC transporters is altered in the immortalized hypothalamic cell line N25/2 following amino acid starvation

Sofie V. Hellsten; Emilia Lekholm; Tauseef Ahmad; Robert Fredriksson

Amino acids are known to play a key role in gene expression regulation, and in mammalian cells, amino acid signaling is mainly mediated via two pathways, the mammalian target of rapamycin complex 1 (mTORC1) pathway and the amino acid responsive (AAR) pathway. It is vital for cells to have a system to sense amino acid levels, in order to control protein and amino acid synthesis and catabolism. Amino acid transporters are crucial in these pathways, due to both their sensing and transport functions. In this large‐scale study, an immortalized mouse hypothalamic cell line (N25/2) was used to study the gene expression changes following 1, 2, 3, 5 or 16 h of amino acid starvation. We focused on genes encoding solute carriers (SLCs) and putative SLCs, more specifically on amino acid transporters. The microarray contained 28 270 genes and 86.2% of the genes were expressed in the cell line. At 5 h of starvation, 1001 genes were upregulated and 848 genes were downregulated, and among these, 47 genes from the SLC superfamily or atypical SLCs were found. Of these, 15 were genes encoding amino acid transporters and 32 were genes encoding other SLCs or atypical SLCs. Increased expression was detected for genes encoding amino acid transporters from system A, ASC, L, N, T, xc‐, and y+. Using GO annotations, genes involved in amino acid transport and amino acid transmembrane transporter activity were found to be most upregulated at 3 h and 5 h of starvation.


PLOS ONE | 2017

The gene expression of the neuronal protein, SLC38A9, changes in mouse brain after in vivo starvation and high-fat diet

Sofie V. Hellsten; Mikaela M. Eriksson; Emilia Lekholm; Vasiliki Arapi; Emelie Perland; Robert Fredriksson

SLC38A9 is characterized as a lysosomal component of the amino acid sensing Ragulator-RAG GTPase complex, controlling the mechanistic target of rapamycin complex 1 (mTORC1). Here, immunohistochemistry was used to map SLC38A9 in mouse brain and staining was detected throughout the brain, in cortex, hypothalamus, thalamus, hippocampus, brainstem and cerebellum. More specifically, immunostaining was found in areas known to be involved in amino acid sensing and signaling pathways e.g. piriform cortex and hypothalamus. SLC38A9 immunoreactivity co-localized with both GABAergic and glutamatergic neurons, but not with astrocytes. SLC38A9 play a key role in the mTORC1 pathway, and therefore we performed in vivo starvation and high-fat diet studies, to measure gene expression alterations in specific brain tissues and in larger brain regions. Following starvation, Slc38a9 was upregulated in brainstem and cortex, and in anterior parts of the brain (Bregma 3.2 to -2.1mm). After high-fat diet, Slc38a9 was specifically upregulated in hypothalamus, while overall downregulation was noticed throughout the brain (Bregma 3.2 to -8.6mm).


Frontiers in Molecular Neuroscience | 2017

Putative Membrane-Bound Transporters MFSD14A and MFSD14B Are Neuronal and Affected by Nutrient Availability

Emilia Lekholm; Emelie Perland; Mikaela M. Eriksson; Sofie V. Hellsten; Frida A. Lindberg; Jinar Rostami; Robert Fredriksson

Characterization of orphan transporters is of importance due to their involvement in cellular homeostasis but also in pharmacokinetics and pharmacodynamics. The tissue and cellular localization, as well as function, is still unknown for many of the solute carriers belonging to the major facilitator superfamily (MFS) Pfam clan. Here, we have characterized two putative novel transporters MFSD14A (HIAT1) and MFSD14B (HIATL1) in the mouse central nervous system and found protein staining throughout the adult mouse brain. Both transporters localized to neurons and MFSD14A co-localized with the Golgi marker Giantin in primary embryonic cortex cultures, while MFSD14B staining co-localized with an endoplasmic retention marker, KDEL. Based on phylogenetic clustering analyses, we predict both to have organic substrate profiles, and possible involvement in energy homeostasis. Therefore, we monitored gene regulation changes in mouse embryonic primary cultures after amino acid starvations and found both transporters to be upregulated after 3 h of starvation. Interestingly, in mice subjected to 24 h of food starvation, both transporters were downregulated in the hypothalamus, while Mfsd14a was also downregulated in the brainstem. In addition, in mice fed a high fat diet (HFD), upregulation of both transporters was seen in the striatum. Both MFSD14A and MFSD14B were intracellular neuronal membrane-bound proteins, expressed in the Golgi and Endoplasmic reticulum, affected by both starvation and HFD to varying degree in the mouse brain.


Frontiers in Molecular Biosciences | 2018

Nutritional Stress Induced by Amino Acid Starvation Results in Changes for Slc38 Transporters in Immortalized Hypothalamic Neuronal Cells and Primary Cortex Cells

Sofie V. Hellsten; Rekha Tripathi; Mikaela M. Ceder; Robert Fredriksson

Amino acid sensing and signaling is vital for cells, and both gene expression and protein levels of amino acid transporters are regulated in response to amino acid availability. Here, the aim was to study the regulation of all members of the SLC38 amino acid transporter family, Slc38a1-11, in mouse brain cells following amino acid starvation. We reanalyzed microarray data for the immortalized hypothalamic cell line N25/2 subjected to complete amino acid starvation for 1, 2, 3, 5, or 16 h, focusing specifically on the SLC38 family. All 11 Slc38 genes were expressed in the cell line, and Slc38a1, Slc38a2, and Slc38a7 were significantly upregulated at 5 h and most strongly at 16 h. Here, protein level changes were measured for SLC38A7 and the orphan family member SLC38A11 which has not been studied under different amino acid starvation condition at protein level. At 5 h, no significant alteration on protein level for either SLC38A7 or SLC38A11 could be detected. In addition, primary embryonic cortex cells were deprived of nine amino acids, the most common amino acids transported by the SLC38 family members, for 3 h, 7 h or 12 h, and the gene expression was measured using qPCR. Slc38a1, Slc38a2, Slc38a5, Slc38a6, Slc38a9, and Slc38a10 were upregulated, while Slc38a3 and Slc38a7 were downregulated. Slc38a8 was upregulated at 5 h and downregulated at 12 h. In conclusion, several members from the SLC38 family are regulated depending on amino acid levels and are likely to be involved in amino acid sensing and signaling in brain.

Collaboration


Dive into the Sofie V. Hellsten's collaboration.

Top Co-Authors

Avatar

Robert Fredriksson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge