Sofiene Abdellaoui
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sofiene Abdellaoui.
Biosensors and Bioelectronics | 2016
Michelle Rasmussen; Sofiene Abdellaoui; Shelley D. Minteer
Enzymatic biofuel cells are bioelectronic devices that utilize oxidoreductase enzymes to catalyze the conversion of chemical energy into electrical energy. This review details the advancements in the field of enzymatic biofuel cells over the last 30 years. These advancements include strategies for improving operational stability and electrochemical performance, as well as device fabrication for a variety of applications, including implantable biofuel cells and self-powered sensors. It also discusses the current scientific and engineering challenges in the field that will need to be addressed in the future for commercial viability of the technology.
Chemical Communications | 2016
Sofiene Abdellaoui; Ross D. Milton; Timothy Quah; Shelley D. Minteer
Electron mediation between NAD-dependent enzymes using quinone moieties typically requires the use of a diaphorase as an intermediary enzyme. The ability for a naphthoquinone redox polymer to independently oxidize enzymatically-generated NADH is demonstrated for application to glucose/O2 enzymatic fuel cells.
Analytical Chemistry | 2013
Sofiene Abdellaoui; Alexandre Noiriel; Robert W. Henkens; Celia Bonaventura; Loïc J. Blum; Bastien Doumèche
The rapid electrochemical screening of enzyme activities in bioelectronics is still a challenging issue. In order to solve this problem, we propose to use a 96-well electrochemical assay. This system is composed of 96 screen-printed electrodes on a printed circuit board adapted from a commercial system (carbon is used as the working electrode and silver chloride as the counter/reference electrode). The associated device allows for the measurements on the 96 electrodes to be performed within a few seconds. In this work, we demonstrate the validity of the screening method with the commercial laccase from the fungus Trametes versicolor. The signal-to-noise ratio (S/N) is found to be the best way to analyze the electrochemical signals. The S/N follows a saturation-like mechanism with a dynamic linear range of two decades ranging from 0.5 to 75 ng of laccase (corresponding to enzymatic activities from 62 × 10(-6) to 9.37 × 10(-3) μmol min(-1)) and a sensitivity of 3027 μg(-1) at +100 mV versus Ag/AgCl. Laccase inhibitors (azide and fluoride anions), pH optima, and interfering molecules could also be identified within a few minutes.
Chemical Communications | 2015
Sofiene Abdellaoui; David P. Hickey; Andrew R. Stephens; Shelley D. Minteer
The complete electro-oxidation of glycerol to CO2 is performed through an oxidation cascade using a hybrid catalytic system combining a recombinant enzyme, oxalate decarboxylase from Bacillus subtilis, and an organic oxidation catalyst, 4-amino-TEMPO. This system is capable of electrochemically oxidizing glycerol at a carbon electrode collecting all 14 electrons per molecule.
Sustainable Energy and Fuels | 2017
Matteo Grattieri; Kamrul Hasan; Ross D. Milton; Sofiene Abdellaoui; M. Suvira; Bassam Alkotaini; Shelley D. Minteer
The optimization of bioelectrochemical systems operating with microorganisms requires a deep understanding of the extracellular electron transfer (EET) processes, however, EET studies have been reported for few bacterial species. Herein, the bioelectrocatalytic properties of Rikenella microfusus, an anaerobic bacterium commonly found in electrode-colonizing biofilms, have been investigated for the first time.
SPR Electrochemistry | 2015
David P. Hickey; Ross D. Milton; Michelle Rasmussen; Sofiene Abdellaoui; Khiem Van Nguyen; Shelley D. Minteer
This book chapter will detail the fundamentals of direct and mediated bioelectrocatalysis, as well as the applications of bioelectrocatalysis. Applications discussed include environmental, biomedical, and food and drink biosensors, self-powered sensors, biofuel cells, biosolar cells, and bioelectrosynthesis of value added products.
Journal of the American Chemical Society | 2018
Rong Cai; Ross D. Milton; Sofiene Abdellaoui; Terry Park; Janki Patel; Bassam Alkotaini; Shelley D. Minteer
Over the past decade, there has been significant research in electrochemical reduction of CO2, but it has been difficult to develop catalysts capable of C-C bond formation. Here, we report bioelectrocatalysis of vanadium nitrogenase from Azotobacter vinelandii, where cobaltocenium derivatives transfer electrons to the catalytic VFe protein, independent of ATP-hydrolysis. In this bioelectrochemical system, CO2 is reduced to ethylene (C2H4) and propene (C3H6), by a single metalloenzyme.
Angewandte Chemie | 2018
Mengwei Yuan; Selmihan Sahin; Rong Cai; Sofiene Abdellaoui; David P. Hickey; Shelley D. Minteer; Ross D. Milton
Increasing greenhouse gas emissions have resulted in greater motivation to find novel carbon dioxide (CO2 ) reduction technologies, where the reduction of CO2 to valuable chemical commodities is desirable. Molybdenum-dependent formate dehydrogenase (Mo-FDH) from Escherichia coli is a metalloenzyme that is able to interconvert formate and CO2 . We describe a low-potential redox polymer, synthesized by a facile method, that contains cobaltocene (grafted to poly(allylamine), Cc-PAA) to simultaneously mediate electrons to Mo-FDH and immobilize Mo-FDH at the surface of a carbon electrode. The resulting bioelectrode reduces CO2 to formate with a high Faradaic efficiency of 99±5 % at a mild applied potential of -0.66 V vs. SHE.
Biochemistry and biophysics reports | 2016
Hassan Rana; Patricia Moussatche; Lis Souza Rocha; Sofiene Abdellaoui; Shelley D. Minteer; Ellen W. Moomaw
Isothermal titration calorimetry (ITC) may be used to determine the kinetic parameters of enzyme-catalyzed reactions when neither products nor reactants are spectrophotometrically visible and when the reaction products are unknown. We report here the use of the multiple injection method of ITC to characterize the catalytic properties of oxalate oxidase (OxOx) from Ceriporiopsis subvermispora (CsOxOx), a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin enzyme identified that catalyzes this reaction. The multiple injection ITC method of measuring OxOx activity involves continuous, real-time detection of the amount of heat generated (dQ) during catalysis, which is equal to the number of moles of product produced times the enthalpy of the reaction (ΔHapp). Steady-state kinetic constants using oxalate as the substrate determined by multiple injection ITC are comparable to those obtained by a continuous spectrophotometric assay in which H2O2 production is coupled to the horseradish peroxidase-catalyzed oxidation of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) and by membrane inlet mass spectrometry. Additionally, we used multiple injection ITC to identify mesoxalate as a substrate for the CsOxOx-catalyzed reaction, with a kinetic parameters comparable to that of oxalate, and to identify a number of small molecule carboxylic acid compounds that also serve as substrates for the enzyme.
Analytical Chemistry | 2017
Rong Cai; Sofiene Abdellaoui; Jay P. Kitt; Cullen Irvine; Joel M. Harris; Shelley D. Minteer; Carol Korzeniewski
The need to immobilize active enzyme, while ensuring high rates of substrate turnover and electronic charge transfer with an electrode, is a centrally important challenge in the field of bioelectrocatalysis. In this work, we demonstrate the use of confocal Raman microscopy as a tool for quantitation and molecular-scale structural characterization of ionomers and proteins within biocatalytic membranes to aid in the development of energy efficient biofuel cells. A set of recently available short side chain Aquivion ionomers spanning a range of equivalent weight (EW) suitable for enzyme immobilization was investigated. Aquivion ionomers (790 EW, 830 EW and 980 EW) received in the proton-exchanged (SO3H) form were treated with tetra-n-butylammonium bromide (TBAB) to neutralize the ionomer and expand the size of ionic domains for enzyme incorporation. Through the use of confocal Raman microscopy, membrane TBA+ ion content was predicted in calibration studies to within a few percent of the conventional titrimetric method across the full range of TBA+: SO3- ratios of practical interest (0.1 to 1.7). Protein incorporation into membranes was quantified at the levels expected in biofuel cell electrodes. Furthermore, features associated with the catalytically active, enzyme-coordinated copper center were evident between 400 and 500 cm-1 in spectra of laccase catalytic membranes, demonstrating the potential to interrogate mechanistic chemistry at the enzyme active site of biocathodes under fuel cell reaction conditions. When benchmarked against the 1100 EW Nafion ionomer in glucose/air enzymatic fuel cells (EFCs), EFCs with laccase air-breathing cathodes prepared from TBA+ modified Aquivion ionomers were able to reach maximum power densities (Pmax) up to 1.5 times higher than EFCs constructed with cathodes prepared from TBA+ modified Nafion. The improved performance of EFCs containing the short side chain Aquivion ionomers relative to Nafion is traced to effects of ionomer ion-exchange capacity (IEC, where IEC = EW-1), where the greater density of SO3- moieties in the Aquivion materials produces an environment more favorable to mass transport and higher TBA+ concentrations.