Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sofiya N. Micheva-Viteva is active.

Publication


Featured researches published by Sofiya N. Micheva-Viteva.


Virulence | 2013

Small RNA-mediated regulation of host–pathogen interactions

Jennifer F Harris; Sofiya N. Micheva-Viteva; Nan Li; Elizabeth Hong-Geller

The rise in antimicrobial drug resistance, alongside the failure of conventional research to discover new antibiotics, will inevitably lead to a public health crisis that can drastically curtail our ability to combat infectious disease. Thus, there is a great global health need for development of antimicrobial countermeasures that target novel cell molecules or processes. RNA represents a largely unexploited category of potential targets for antimicrobial design. For decades, control of cellular behavior was thought to be the exclusive purview of protein-based regulators. The recent discovery of small RNAs (sRNAs) as a universal class of powerful RNA-based regulatory biomolecules has the potential to revolutionize our understanding of gene regulation in practically all biological functions. In general, sRNAs regulate gene expression by base-pairing with multiple downstream target mRNAs to prevent translation of mRNA into protein. In this review, we will discuss recent studies that document discovery of bacterial, viral, and human sRNAs and their molecular mechanisms in regulation of pathogen virulence and host immunity. Illuminating the functional roles of sRNAs in virulence and host immunity can provide the fundamental knowledge for development of next-generation antibiotics using sRNAs as novel targets.


Biochemical and Biophysical Research Communications | 2012

The Brucella TIR-like protein TcpB interacts with the death domain of MyD88

Anu Chaudhary; Kumkum Ganguly; Stéphanie Cabantous; Geoffrey S. Waldo; Sofiya N. Micheva-Viteva; Kamalika Nag; William S. Hlavacek; Chang Shung Tung

The pathogen Brucella melitensis secretes a Toll/interleukin-1 receptor (TIR) domain containing protein that abrogates host innate immune responses. In this study, we have characterized the biochemical interactions of Brucella TIR-like protein TcpB with host innate immune adaptor proteins. Using protein-fragment complementation assays based on Gaussia luciferase and green fluorescent protein, we find that TcpB interacts directly with MyD88 and that this interaction is significantly stronger than the interaction of TcpB with TIRAP, the only other adaptor protein that detectably interacts with TcpB. Surprisingly, the TcpB-MyD88 interaction depends on the death domain (DD) of MyD88, and TcpB does not interact with the isolated TIR domain of MyD88. TcpB disrupts MyD88(DD)-MyD88(DD), MyD88(DD)-MyD88(TIR) and MyD88(DD)-MyD88 interactions but not MyD88-MyD88 or MyD88(TIR)-MyD88(TIR) interactions. Structural models consistent with these results suggest how TcpB might inhibit TLR signaling by targeting MyD88 via a DD-TIR domain interface.


Biophysical Journal | 2013

Counting Small RNA in Pathogenic Bacteria

Douglas P. Shepherd; Nan Li; Sofiya N. Micheva-Viteva; Brian Munsky; Elizabeth Hong-Geller; James H. Werner

Here, we present a modification to single-molecule fluorescence in situ hybridization that enables quantitative detection and analysis of small RNA (sRNA) expressed in bacteria. We show that short (~200 nucleotide) nucleic acid targets can be detected when the background of unbound singly dye-labeled DNA oligomers is reduced through hybridization with a set of complementary DNA oligomers labeled with a fluorescence quencher. By neutralizing the fluorescence from unbound probes, we were able to significantly reduce the number of false positives, allowing for accurate quantification of sRNA levels. Exploiting an automated, mutli-color wide-field microscope and data analysis package, we analyzed the statistics of sRNA expression in thousands of individual bacteria. We found that only a small fraction of either Yersinia pseudotuberculosis or Yersinia pestis bacteria express the small RNAs YSR35 or YSP8, with the copy number typically between 0 and 10 transcripts. The numbers of these RNA are both increased (by a factor of 2.5× for YSR35 and 3.5× for YSP8) upon a temperature shift from 25 to 37 °C, suggesting they play a role in pathogenesis. The copy number distribution of sRNAs from bacteria-to-bacteria are well-fit with a bursting model of gene transcription. The ability to directly quantify expression level changes of sRNA in single cells as a function of external stimuli provides key information on the role of sRNA in cellular regulatory networks.


Current Drug Discovery Technologies | 2010

Functional gene discovery using RNA interference-based genomic screens to combat pathogen infection.

Elizabeth Hong-Geller; Sofiya N. Micheva-Viteva

The rampant use of antibiotics in the last half-century has imposed an unforeseen biological cost, the unprecedented acceleration of bacterial evolution to produce drug-resistant strains to practically every approved antibiotic. This rise in antimicrobial drug resistance, alongside the failure of conventional research efforts to discover new antibiotics, may eventually lead to a public health crisis that can drastically curtail our ability to combat infectious disease. To address this public health need for novel countermeasure strategies, research efforts have recently focused on identification of genes in the host, rather than the pathogen, that are essential for successful pathogen infection, as potential targets for drug discovery. In the past decade, RNA interference (RNAi) has emerged as a powerful tool for analyzing gene function by silencing target genes through the specific destruction of their mRNAs. Based on RNAi methodology, high-throughput genome- wide assay platforms have been developed to identify candidate host genes that are manipulated by pathogens during infection. In this review, we will discuss recent strategies for RNAi-based genomic screens to investigate hostpathogen mechanisms in human cell models using both bacterial pathogens, including Salmonella typhimurium, Mycobacterium tuberculosis, and Listeria monocytogenes, and viruses, such as Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV) and influenza. These functional genomics studies have begun to elucidate novel pathogen virulence mechanisms and thus, may serve as the basis for the design of novel host-based inhibitor therapeutics that can block or alleviate the downstream effects of pathogen infection.


BMC Genomics | 2014

Differential expression of small RNAs from Burkholderia thailandensis in response to varying environmental and stress conditions

Chris J. Stubben; Sofiya N. Micheva-Viteva; Yulin Shou; Sarah K Buddenborg; John Dunbar; Elizabeth Hong-Geller

BackgroundBacterial small RNAs (sRNAs) regulate gene expression by base-pairing with downstream target mRNAs to attenuate translation of mRNA into protein at the post-transcriptional level. In response to specific environmental changes, sRNAs can modulate the expression levels of target genes, thus enabling adaptation of cellular physiology.ResultsWe profiled sRNA expression in the Gram-negative bacteria Burkholderia thailandensis cultured under 54 distinct growth conditions using a Burkholderia-specific microarray that contains probe sets to all intergenic regions greater than 90 bases. We identified 38 novel sRNAs and performed experimental validation on five sRNAs that play a role in adaptation of Burkholderia to cell stressors. In particular, the trans-encoded BTH_s1 and s39 exhibited differential expression profiles dependent on growth phase and cell stimuli, such as antibiotics and serum. Furthermore, knockdown of the highly-expressed BTH_s39 by antisense transcripts reduced B. thailandensis cell growth and attenuated host immune response upon infection, indicating that BTH_s39 functions in bacterial metabolism and adaptation to the host. In addition, expression of cis-encoded BTH_s13 and s19 found in the 5′ untranslated regions of their cognate genes correlated with tight regulation of gene transcript levels. This sRNA-mediated downregulation of gene expression may be a conserved mechanism of post-transcriptional gene dosage control.ConclusionsThese studies provide a broad analysis of differential Burkholderia sRNA expression profiles and illustrate the complexity of bacterial gene regulation in response to different environmental stress conditions.


BMC Microbiology | 2013

c-KIT signaling is targeted by pathogenic Yersinia to suppress the host immune response

Sofiya N. Micheva-Viteva; Yulin Shou; Kristy Nowak-Lovato; Kirk D. Rector; Elizabeth Hong-Geller

BackgroundThe pathogenic Yersinia species exhibit a primarily extracellular lifestyle through manipulation of host signaling pathways that regulate pro-inflammatory gene expression and cytokine release. To identify host genes that are targeted by Yersinia during the infection process, we performed an RNA interference (RNAi) screen based on recovery of host NF-κB-mediated gene activation in response to TNF-α stimulation upon Y. enterocolitica infection.ResultsWe screened shRNAs against 782 genes in the human kinome and 26 heat shock genes, and identified 19 genes that exhibited ≥40% relative increase in NF-κB reporter gene activity. The identified genes function in multiple cellular processes including MAP and ERK signaling pathways, ion channel activity, and regulation of cell growth. Pre-treatment with small molecule inhibitors specific for the screen hits c-KIT and CKII recovered NF-κB gene activation and/or pro-inflammatory TNF-α cytokine release in multiple cell types, in response to either Y. enterocolitica or Y. pestis infection.ConclusionsWe demonstrate that pathogenic Yersinia exploits c-KIT signaling in a T3SS-dependent manner to downregulate expression of transcription factors EGR1 and RelA/p65, and pro-inflammatory cytokines. This study is the first major functional genomics RNAi screen to elucidate virulence mechanisms of a pathogen that is primarily dependent on extracellular-directed immunomodulation of host signaling pathways for suppression of host immunity.


Archive | 2013

Small Molecule Screens to Identify Inhibitors of Infectious Disease

Elizabeth Hong-Geller; Sofiya N. Micheva-Viteva

In the 1940’s, the development of penicillin as a potent broad-range antibiotic revolutionized the treatment of infectious disease and ushered in a prolific discovery period of natural small molecules produced by microorganisms that were antagonistic towards the growth of other bacteria. Antibiotics have generally been classified by their mechanism of action. For example, the β-lactam compounds, penicillin and cephalosporins, disrupt the synthesis of the peptidoglycan layer of the bacterial cell wall, whereas protein synthesis inhibitors, such as tetracycline and some aminoglycosides, bind to the 30S ribosomal subunit and block ad‐ dition of amino acids to the growing peptide chain. By the 1960’s, the majority of all antibi‐ otics in use today had been isolated and developed for public consumption, leading the U.S. Surgeon General to declare in 1968 that the war on infectious disease had been won.


PLOS ONE | 2016

Functional and Structural Analysis of a Highly-Expressed Yersinia pestis Small RNA following Infection of Cultured Macrophages

Nan Li; Scott P. Hennelly; Chris J. Stubben; Sofiya N. Micheva-Viteva; Bin Hu; Yulin Shou; Momchilo Vuyisich; Chang Shung Tung; Patrick Chain; Karissa Y. Sanbonmatsu; Elizabeth Hong-Geller; Roy Martin Roop

Non-coding small RNAs (sRNAs) are found in practically all bacterial genomes and play important roles in regulating gene expression to impact bacterial metabolism, growth, and virulence. We performed transcriptomics analysis to identify sRNAs that are differentially expressed in Yersinia pestis that invaded the human macrophage cell line THP-1, compared to pathogens that remained extracellular in the presence of host. Using ultra high-throughput sequencing, we identified 37 novel and 143 previously known sRNAs in Y. pestis. In particular, the sRNA Ysr170 was highly expressed in intracellular Yersinia and exhibited a log2 fold change ~3.6 higher levels compared to extracellular bacteria. We found that knock-down of Ysr170 expression attenuated infection efficiency in cell culture and growth rate in response to different stressors. In addition, we applied selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE) analysis to determine the secondary structure of Ysr170 and observed structural changes resulting from interactions with the aminoglycoside antibiotic gentamycin and the RNA chaperone Hfq. Interestingly, gentamicin stabilized helix 4 of Ysr170, which structurally resembles the native gentamicin 16S ribosomal binding site. Finally, we modeled the tertiary structure of Ysr170 binding to gentamycin using RNA motif modeling. Integration of these experimental and structural methods can provide further insight into the design of small molecules that can inhibit function of sRNAs required for pathogen virulence.


Frontiers in Cellular and Infection Microbiology | 2017

PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis

Sofiya N. Micheva-Viteva; Yulin Shou; Kumkum Ganguly; Terry H. Wu; Elizabeth Hong-Geller

Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signaling as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. Identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host-targeted therapies against infectious disease caused by intracellular pathogens.


Current Drug Discovery Technologies | 2010

Integration of physicochemical and pharmacokinetic parameters in lead optimization: a physiological pharmacokinetic model based approach.

Elizabeth Hong-Geller; Sofiya N. Micheva-Viteva; Biju Benjamin; Tarani Kanta Barman; Tridib Chaira; Jyoti Paliwal

Collaboration


Dive into the Sofiya N. Micheva-Viteva's collaboration.

Top Co-Authors

Avatar

Elizabeth Hong-Geller

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nan Li

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yulin Shou

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James H. Werner

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brian Munsky

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Chang Shung Tung

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Chris J. Stubben

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Douglas P. Shepherd

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kumkum Ganguly

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Terry H. Wu

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge