Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sofya V. Lushchekina is active.

Publication


Featured researches published by Sofya V. Lushchekina.


Scientific Reports | 2015

Conjugates of γ-Carbolines and Phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer Disease

G. F. Makhaeva; Sofya V. Lushchekina; N. P. Boltneva; V. B. Sokolov; V. V. Grigoriev; Olga G. Serebryakova; Ekaterina A. Vikhareva; Alexey Yu. Aksinenko; George E. Barreto; Gjumrakch Aliev; S. O. Bachurin

Alzheimer disease is a multifactorial pathology and the development of new multitarget neuroprotective drugs is promising and attractive. We synthesized a group of original compounds, which combine in one molecule γ-carboline fragment of dimebon and phenothiazine core of methylene blue (MB) linked by 1-oxo- and 2-hydroxypropylene spacers. Inhibitory activity of the conjugates toward acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and structurally close to them carboxylesterase (CaE), as well their binding to NMDA-receptors were evaluated in vitro and in silico. These newly synthesized compounds showed significantly higher inhibitory activity toward BChE with IC50 values in submicromolar and micromolar range and exhibited selective inhibitory action against BChE over AChE and CaE. Kinetic studies for the 9 most active compounds indicated that majority of them were mixed-type BChE inhibitors. The main specific protein-ligand interaction is π-π stacking of phenothiazine ring with indole group of Trp82. These compounds emerge as promising safe multitarget ligands for the further development of a therapeutic approach against aging-related neurodegenerative disorders such as Alzheimer and/or other pathological conditions.


Bioorganic & Medicinal Chemistry | 2016

Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors

G. F. Makhaeva; N. P. Boltneva; Sofya V. Lushchekina; Olga G. Serebryakova; Tatyana S. Stupina; Alexey A. Terentiev; I. V. Serkov; A. N. Proshin; S. O. Bachurin; Rudy J. Richardson

A series of 31 N,N-disubstituted 2-amino-5-halomethyl-2-thiazolines was designed, synthesized, and evaluated for inhibitory potential against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterase (CaE). The compounds did not inhibit AChE; the most active compounds inhibited BChE and CaE with IC50 values of 0.22-2.3μM. Pyridine-containing compounds were more selective toward BChE; compounds with the para-OMe substituent in one of the two dibenzyl fragments were more selective toward CaE. Iodinated derivatives were more effective BChE inhibitors than brominated ones, while there was no influence of halogen type on CaE inhibition. Inhibition kinetics for the 9 most active compounds indicated non-competitive inhibition of CaE and varied mechanisms (competitive, non-competitive, or mixed-type) for inhibition of BChE. Docking simulations predicted key binding interactions of compounds with BChE and CaE and revealed that the best docked positions in BChE were at the bottom of the gorge in close proximity to the catalytic residues in the active site. In contrast, the best binding positions for CaE were clustered rather far from the active site at the top of the gorge. Thus, the docking results provided insight into differences in kinetic mechanisms and inhibitor activities of the tested compounds. A cytotoxicity test using the MTT assay showed that within solubility limits (<30μM), none of the tested compounds significantly affected viability of human fetal mesenchymal stem cells. The results indicate that a new series of N,N-disubstituted 2-aminothiazolines could serve as BChE and CaE inhibitors for potential medicinal applications.


Chemico-Biological Interactions | 2016

Emergence of catalytic bioscavengers against organophosphorus agents

Patrick Masson; Sofya V. Lushchekina

Bioscavengers are an effective alternative approach for pre- and post-exposure treatments of nerve agent (NA) poisoning. Bioscavengers are natural or recombinant enzymes, reactive proteins, and antibodies that neutralize NAs before they reach their physiological targets. They are administered by injection (protein or gene delivery vector) and react with NAs in the bloodstream. Other ways of delivery can be used: inhalation for pulmonary delivery, topical creams for skin protection, etc. Operational bioscavengers must be producible at low cost, not susceptible to induce immune response and adverse effects, and stable in the bloodstream, upon storage, and under field conditions. First generation bioscavengers, cholinesterases and carboxylesterases, are stoichiometric bioscavengers. However, stoichiometric neutralization of NAs needs administration of huge doses of costly biopharmaceuticals. Second generation bioscavengers are catalytic bioscavengers. These are capable of detoxifying organophosphates regeneratively. By virtue of high turnover, much lower doses are needed for rapid neutralization of toxicants. The most promising catalytic bioscavengers are evolved mutants of phosphotriesterases (bacterial enzymes, mammalian paraoxonases), displaying enantiomeric preference for toxic NA isomers. However, engineering of cholinesterases, carboxylesterases, prolidases and other enzymes, e.g. phosphotriesterases-lactonases from extremophiles is of interest. In particular, association of cholinesterase mutants (not susceptible to age after phosphylation) with fast-reactivating oximes leads to pseudocatalytic bioscavengers. Thus, catalytic and pseudocatalytic bioscavengers are an improvement of bioscavenger-based medical countermeasures in terms of efficacy and cost.


PLOS ONE | 2014

Characterization of a Novel BCHE “Silent” Allele: Point Mutation (p.Val204Asp) Causes Loss of Activity and Prolonged Apnea with Suxamethonium

Hervé Delacour; Sofya V. Lushchekina; Isabelle Mabboux; Aurore Bousquet; Franck Ceppa; Lawrence M. Schopfer; Oksana Lockridge; Patrick Masson

Butyrylcholinesterase deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivacurium) in patients who have mutations in the BCHE gene. Here, we report a case of prolonged neuromuscular block after administration of suxamethonium leading to the discovery of a novel BCHE variant (c.695T>A, p.Val204Asp). Inhibition studies, kinetic analysis and molecular dynamics were undertaken to understand how this mutation disrupts the catalytic triad and determines a “silent” phenotype. Low activity of patient plasma butyrylcholinesterase with butyrylthiocholine (BTC) and benzoylcholine, and values of dibucaine and fluoride numbers fit with heterozygous atypical silent genotype. Electrophoretic analysis of plasma BChE of the proband and his mother showed that patient has a reduced amount of tetrameric enzyme in plasma and that minor fast-moving BChE components: monomer, dimer, and monomer-albumin conjugate are missing. Kinetic analysis showed that the p.Val204Asp/p.Asp70Gly-p.Ala539Thr BChE displays a pure Michaelian behavior with BTC as the substrate. Both catalytic parameters Km = 265 µM for BTC, two times higher than that of the atypical enzyme, and a low Vmax are consistent with the absence of activity against suxamethonium. Molecular dynamic (MD) simulations showed that the overall effect of the mutation p.Val204Asp is disruption of hydrogen bonding between Gln223 and Glu441, leading Ser198 and His438 to move away from each other with subsequent disruption of the catalytic triad functionality regardless of the type of substrate. MD also showed that the enzyme volume is increased, suggesting a pre-denaturation state. This fits with the reduced concentration of p.Ala204Asp/p.Asp70Gly-p.Ala539Thr tetrameric enzyme in the plasma and non-detectable fast moving-bands on electrophoresis gels.


Journal of Molecular Neuroscience | 2014

Molecular Modeling Evidence for His438 Flip in the Mechanism of Butyrylcholinesterase Hysteretic Behavior

Sofya V. Lushchekina; Alexander V. Nemukhin; Sergei D. Varfolomeev; Patrick Masson

Cholinesterases display a hysteretic behavior with certain substrates and irreversible inhibitors. For years, this behavior has remained puzzling. However, several lines of evidence indicated that it is caused by perturbation of the catalytic triad and its water environment. In the present study, using molecular dynamics simulations of Ala328Cys BuChE mutant and wild-type BuChE in the absence and presence of a co-solvent (sucrose, glycerol), we provide evidence that hysteresis originates in a flip of the catalytic triad histidine (His438). This event is controlled by water molecules that interact with active site residues. The physiological significance of this phenomenon is still an issue.


Russian Chemical Bulletin | 2013

Molecular modeling of butyrylcholinesterase inhibition by cresyl saligenin phosphate

Sofya V. Lushchekina; V. S. Polomskikh; S. D. Varfolomeev; Patrick Masson

Presumably, aerotoxic syndrome is caused by the impact of tricresyl phosphate (TCP), a lubricating oil additive for aircraft engines, on the human body. The most toxic tri-ortho-isomer of this compound is metabolized in the body to give cresyl saligenin phosphate (CSP), which inhibits butyrylcholinesterase (BChE) giving phosphoserine. In this case, BChE acts as a stoichiometric bioscavenger irreversibly binding CSP and as a biomarker of exposure to low doses of TCP. The mechanism of CSP interaction with BChE at the initial stage of formation of the enzyme—inhibitor complex was studied by molecular modeling techniques. The results indicate that BChE interaction with the (R)-enantiomer of CSP in the most stable envelope conformation of the saligenin ring is most preferable. Comparison of the results obtained using different computation methods demonstrated that the best agreement with experimental data can be achieved by combining standard molecular docking methods with quantum mechanics methods for more accurate structure preparation.


Archives of Biochemistry and Biophysics | 2016

Slow-binding inhibition of cholinesterases, pharmacological and toxicological relevance.

Patrick Masson; Sofya V. Lushchekina

Slow-binding inhibition (SBI) of enzymes is characterized by slow establishment of enzyme-inhibitor equilibrium. Cholinesterases (ChEs) display slow onset of inhibition with certain inhibitors. After a survey of SBI mechanisms, SBI of ChEs is examined. SBI results either from simple slow interaction, induced-fit, or slow conformational selection. In some cases, the slow equilibrium is followed by an irreversible chemical step. This later was observed for the interaction of ChEs with certain irreversible inhibitors. Because slow-binding inhibitors present pharmacological advantages over classical reversible inhibitors (e.g. long target-residence times, resulting in prolonged efficacy with minimal unwanted side effects), slow-binding inhibitors of ChEs are promising new drugs for treatment of Alzheimer disease, myasthenia, and neuroprotection. SBI is also of toxicological importance; it may play a role in mechanisms of resistance and protection against poisoning by irreversible agents.


ChemMedChem | 2015

6-Methyluracil Derivatives as Bifunctional Acetylcholinesterase Inhibitors for the Treatment of Alzheimer's Disease.

V. E. Semenov; Irina V. Zueva; Marat A. Mukhamedyarov; Sofya V. Lushchekina; Alexandra D. Kharlamova; Elena O. Petukhova; A. S. Mikhailov; Sergey N. Podyachev; L. F. Saifina; Konstantin A. Petrov; Oksana A. Minnekhanova; V. V. Zobov; E. E. Nikolsky; Patrick Masson; V. S. Reznik

Novel 6‐methyluracil derivatives with ω‐(substituted benzylethylamino)alkyl chains at the nitrogen atoms of the pyrimidine ring were designed and synthesized. The numbers of methylene groups in the alkyl chains were varied along with the electron‐withdrawing substituents on the benzyl rings. The compounds are mixed‐type reversible inhibitors of cholinesterases, and some of them show remarkable selectivity for human acetylcholinesterase (hAChE), with inhibitory potency in the nanomolar range, more than 10 000‐fold higher than that for human butyrylcholinesterase (hBuChE). Molecular modeling studies indicate that these compounds are bifunctional AChE inhibitors, spanning the enzyme active site gorge and binding to its peripheral anionic site (PAS). In vivo experiments show that the 6‐methyluracil derivatives are able to penetrate the blood–brain barrier (BBB), inhibiting brain‐tissue AChE. The most potent AChE inhibitor, 3 d (1,3‐bis[5‐(o‐nitrobenzylethylamino)pentyl]‐6‐methyluracil), was found to improve working memory in scopolamine and transgenic APP/PS1 murine models of Alzheimers disease, and to significantly decrease the number and area of β‐amyloid peptide plaques in the brain.


Scientific Reports | 2017

Novel conjugates of aminoadamantanes with carbazole derivatives as potential multitarget agents for AD treatment

S. O. Bachurin; E. F. Shevtsova; G. F. Makhaeva; V. V. Grigoriev; N. P. Boltneva; N. V. Kovaleva; Sofya V. Lushchekina; Pavel N. Shevtsov; Margarita E. Neganova; Olga Redkozubova; Elena V. Bovina; Alexey V. Gabrelyan; Vladimir P. Fisenko; V. B. Sokolov; Alexey Yu. Aksinenko; Valentina Echeverria; George E. Barreto; Gjumrakch Aliev

A new group of compounds, promising for the design of original multitarget therapeutic agents for treating neurodegenerative diseases, based on conjugates of aminoadamantane and carbazole derivatives was synthesized and investigated. Compounds of these series were found to interact with a group of targets that play an important role in the development of this type of diseases. First of all, these compounds selectively inhibit butyrylcholinesterase, block NMDA receptors containing NR2B subunits while maintaining the properties of MK-801 binding site blockers, exert microtubules stabilizing properties, and possess the ability to protect nerve cells from death at the calcium overload conditions. The leading compound C-2h has been shown the most promising effects on all analyzed parameters. Thus, these compounds can be regarded as promising candidates for the design of multi-target disease-modifying drugs for treatment of AD and/or similar neuropathologies.


Journal of Physical Chemistry B | 2016

Modeling the complete catalytic cycle of aspartoacylase

Ekaterina D. Kots; Maria G. Khrenova; Sofya V. Lushchekina; Sergei D. Varfolomeev; Bella L. Grigorenko; Alexander V. Nemukhin

The complete catalytic cycle of aspartoacylase (ASPA), a zinc-dependent enzyme responsible for cleavage of N-acetyl-l-aspartate, is characterized by the methods of molecular modeling. The reaction energy profile connecting the enzyme-substrate (ES) and the enzyme-product (EP) complexes is constructed by the quantum mechanics/molecular mechanics (QM/MM) method assisted by the molecular dynamics (MD) simulations with the QM/MM potentials. Starting from the crystal structure of ASPA complexed with the intermediate analogue, the minimum-energy geometry configurations and the corresponding transition states are located. The stages of substrate binding to the enzyme active site and release of the products are modeled by MD calculations with the replica-exchange umbrella sampling technique. It is shown that the first reaction steps, nucleophilic attack of a zinc-bound nucleophilic water molecule at the carbonyl carbon and the amide bond cleavage, are consistent with the glutamate-assisted mechanism hypothesized for the zinc-dependent hydrolases. The stages of formation of the products, acetate and l-aspartate, and regeneration of the enzyme are characterized for the first time. The constructed free energy diagram from the reactants to the products suggests that the enzyme regeneration, but not the nucleophilic attack of the catalytic water molecule, corresponds to the rate-determining stage of the full catalytic cycle of ASPA.

Collaboration


Dive into the Sofya V. Lushchekina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Masson

Kazan Federal University

View shared research outputs
Top Co-Authors

Avatar

G. F. Makhaeva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

S. D. Varfolomeev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. P. Boltneva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Masson

Kazan Federal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge