Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sohel Zaedi is active.

Publication


Featured researches published by Sohel Zaedi.


Peptides | 2006

Time-dependent expression of renal vaso-regulatory molecules in LPS-induced endotoxemia in rat

Naoto Yamaguchi; Subrina Jesmin; Sohel Zaedi; Nobutake Shimojo; Seiji Maeda; Satoshi Gando; Akio Koyama; Takashi Miyauchi

To elucidate roles of microvascular factors in the pathogenesis of renal complications during endotoxemia, that is characterized by renal vasoconstriction and systemic hypotension/generalized non-renal vasodilation, we profile the expression pattern and time-course of three key vaso-regulators, namely endothelin (ET)-1, nitric oxide (NO), and angiotensin II (Ang II). We hypothesize that disruption of the overall balance between vasodilatation and vasoconstriction in the kidney, during the early phase of sepsis, contribute to its (kidney) predisposition to acute renal failure. Adult male Wistar rats were rendered endotoxemic at different time points (1, 3, 6 and 10 h) by a single i.p. injection of lipopolysaccharide (LPS) (15 mg/kg) dissolved in saline. Control group was injected vehicle only (saline). Both systolic and diastolic blood pressures significantly decreased at different time points after LPS administration. Surprisingly, renal histopathological evaluation showed no remarkable changes in LPS-induced endotoxemia. However, overall, levels of the vaso-regulators and, where applicable, their respective receptors were upregulated: (1) plasma ET-1 increased 25-fold and peaked, as renal ET-1 mRNA, at 3 h; renal ET-1 protein and its receptors, ET type A (ET(A)) receptor (vasoconstrictive) and ET type B (ET(B)) receptor (vasodilatatory) increased in a time-dependent fashion, (2) Ang II increased by 53% compared to control, peaking at 6 h. However, while levels of Ang II type 1 (AT1) receptor increased over time after LPS injection, those of Ang II type 2 (AT2) receptor were downregulated, (3) data of NO system (NO-NOS), the key vasodilator, were the most intriguing. Whereas levels of renal NO increased time-dependently following LPS administration, with a 2240-fold increase in renal iNOS expression, levels of eNOS, were almost unchanged. In conclusion, the present study overall reveals intriguing and complex dynamics between levels of vasoconstrictors and vasodilators during the early phase of LPS-induced endotoxemia. These shifts in molecular expressions are likely triggered by compensatory mechanisms aimed at counteracting the undesirable and dominant effects of one group of vaso-regulatory moiety over the other.


Journal of Inflammation | 2013

The role of angiogenic factors and their soluble receptors in acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) associated with critical illness

Takeshi Wada; Subrina Jesmin; Satoshi Gando; Yuichiro Yanagida; Asumi Mizugaki; Sayeeda Nusrat Sultana; Sohel Zaedi; Hiroyuki Yokota

BackgroundAcute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by a disruption of the endothelium and alveolar epithelial barriers involving increased microvascular permeability, thus resulting in the set of protein-rich pulmonary edema. Angiogenic factors and their receptors, including vascular endothelial growth factor (VEGF)/VEGF-receptor (VEGFR) and the angiopoietin (Ang)/Tie2 signaling pathways, play pivotal roles in both angiogenesis and microvascular permeability. The aim of the study was to assess the relationship between angiogenic factors, their soluble receptors and ALI/ARDS associated with critically ill patients, including sepsis, severe trauma, and post-cardiac arrest syndrome (PCAS).MethodsOne hundred fifty-nine critically ill patients, including 50 patients with sepsis, 57 patients with severe trauma and 52 resuscitated after out-of-hospital cardiac arrest, were divided into three subgroups: including 25 ALI patients, 101 ARDS patients and 22 non-ALI/ARDS patients. The serum levels of angiogenic factors were measured at the time of admission (day 1), as well as day 3 and day 5 and then were compared among the ALI, ARDS and non-ALI/ARDS groups. Their predictive values for developing ALI/ARDS and 28-day mortality were evaluated.ResultsHigher levels of sVEGFR1 and Ang2 were observed in the ALI and ARDS patients than in the non-ALI/ARDS patients during the entire study period. The Ang2/Ang1 ratio in the ARDS group was also significantly higher than that in the non-ALI/ADRS group. The sVEGFR2 levels in the ARDS group on day 1 were significantly lower than those of the non-ALI/ADRS group. In addition, significant positive correlations were seen between the sVEGFR1, Ang2, Ang2/Ang1, and the development of ALI/ARDS in critical illness. There were also significant negative correlations between the minimal value of sVEGFR2, the maximal value of Ang1 and the ALI/ARDS group. In particular, sVEGFR2 and Ang2 were independent predictors of developing ALI/ARDS. Moreover, Ang2 and sVEGFR2 also independently predicted the mortality in ALI/ARDS patients.ConclusionsAngiogenic factors and their soluble receptors, particularly sVEGFR2 and Ang2, are thus considered to be valuable predictive biomarkers in the development of ALI/ARDS associated with critical illness and mortality in ALI/ARDS patients.


BMC Public Health | 2012

Comprehensive assessment of metabolic syndrome among rural Bangladeshi women.

Subrina Jesmin; Reazul Islam; A. M. Shahidul Islam; Sohag Mia; Sayeeda Nusrat Sultana; Sohel Zaedi; Naoto Yamaguchi; Yoshio Iwashima; Michiaki Hiroe; Tetsu Watanabe

BackgroundMetabolic syndrome (MS), defined as a constellation of cardiovascular disease (CVD) risk factors, is one of the fastest growing public health burdens in the Asia-Pacific region. This trend is despite the fact that people in this region are no more overweight than Europeans and Americans. Unfortunately, in South Asia, MS screening has only been performed in a few countries other than Bangladesh. Therefore the present study is designed to conduct a comprehensive screening of MS in Bangladeshi rural women, which includes estimation of prevalence and assessment of risk factor.MethodsA total of 1535 rural Bangladesh women aged ≥ 15 years were studied using a population based cross-sectional survey. The prevalence of MS was estimated using NCEP ATP III, modified NCEP ATP III and IDF criteria.ResultsThe prevalence rates of MS were 25.60% (NCEP ATP III), 36.68% (modified NCEP ATP III), and 19.80% (IDF), as revealed by the present study. Furthermore, based on the NCEP ATP III criteria, 11.60% of the subjects were found to have excess waist circumference; 29.12% had elevated blood pressure, 30.42% had elevated fasting plasma glucose level, 85.47% had low HDL values and 26.91% had increased triglyceride values. Low plasma HDL level was found to be the most common abnormality in the target population and elevated waist circumference was the least frequent component.ConclusionsThe present study reveals a high prevalence of MS and its associated risk factors in rural Bangladeshi women. These findings are important in that they provide insights that will be helpful in formulating effective public health policy, notably the development of future health prevention strategies in Bangladesh.


Experimental Biology and Medicine | 2006

Effect of Endothelin Dual Receptor Antagonist on VEGF Levels in Streptozotocin-Induced Diabetic Rat Retina

Koichi Masuzawa; Subrina Jesmin; Seiji Maeda; Sohel Zaedi; Nobutake Shimojo; Takashi Miyauchi; Katsutoshi Goto

Diabetic retinopathy (DR), one of the most serious causes of blindness, is often associated with the upregulation of vascular endothelial growth factor (VEGF) in retina. Recently, leukocyte adhesion (leukostasis) is blamed for the occlusion of retinal capillary vascularity, which ultimately contributes to the progression of diabetic retinopathy. In addition, intercellular adhesion molecule-1 (ICAM-1), a representative factor for leukostasis, is increased in the diabetic retina. Endothelin (ET)-1, a potent vasoconstrictor peptide, is deeply linked to the pathogenesis of diabetic retinopathy. Different therapeutic interventions concerning VEGF have already been proposed to prevent diabetic retinopathy. However, no study yet has reported whether ET-1 dual receptor antagonist could alter the upregulated VEGF and ICAM-1 levels in the diabetic retina. The present study investigated the effect of ETA/B dual receptor antagonist (SB209670; 1 mg/rat/day) on the expression of VEGF and ICAM-1 in the diabetic rat retina. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in Sprague-Dawley rats, whereas control rats (non-DM control) received only citrate buffer. After 1 week, the STZ-administered rats were randomly divided into two groups: one group (DM+SB209670) received ETA/B dual receptor antagonist for 2 weeks, and a vehicle group (DM+vehicle) was treated only with saline. After the treatment period, the retinas were removed from the eyeballs. In DM+vehicle group, the VEGF expression of the retinas was significantly increased (32.8 pg/mg) in comparison to that in the non-DM control group (26.2 pg/mg); this upregulation of VEGF was reversed in the DM+SB209670 group (28.6 pg/mg). The expression of retinal ICAM-1 was increased in the DM+vehicle group (152.2 pg/mg) compared with the non-DM control group (121.6 pg/mg). However, SB209670 treatment did not alter the expression of retinal ICAM-1 level (154.8 pg/ml) in DM rats. Thus we conclude that an ETA/B dual receptor antagonist could reverse the expression level of VEGF in the diabetic retina while failing to normalize the upregulated ICAM-1 expression.


Critical Care | 2012

Angiogenic factors and their soluble receptors predict organ dysfunction and mortality in post-cardiac arrest syndrome

Takeshi Wada; Subrina Jesmin; Satoshi Gando; Yuichiro Yanagida; Asumi Mizugaki; Sayeeda Nusrat Sultana; Sohel Zaedi; Hiroyuki Yokota

IntroductionPost-cardiac arrest syndrome (PCAS) often leads to multiple organ dysfunction syndrome (MODS) with a poor prognosis. Endothelial and leukocyte activation after whole-body ischemia/reperfusion following resuscitation from cardiac arrest is a critical step in endothelial injury and related organ damage. Angiogenic factors, including vascular endothelial growth factor (VEGF) and angiopoietin (Ang), and their receptors play crucial roles in endothelial growth, survival signals, pathological angiogenesis and microvascular permeability. The aim of this study was to confirm the efficacy of angiogenic factors and their soluble receptors in predicting organ dysfunction and mortality in patients with PCAS.MethodsA total of 52 resuscitated patients were divided into two subgroups: 23 survivors and 29 non-survivors. The serum levels of VEGF, soluble VEGF receptor (sVEGFR)1, sVEGFR2, Ang1, Ang2 and soluble Tie2 (sTie2) were measured at the time of admission (Day 1) and on Day 3 and Day 5. The ratio of Ang2 to Ang1 (Ang2/Ang1) was also calculated. This study compared the levels of angiogenic factors and their soluble receptors between survivors and non-survivors, and evaluated the predictive value of these factors for organ dysfunction and 28-day mortality.ResultsThe non-survivors demonstrated more severe degrees of organ dysfunction and a higher prevalence of MODS. Non-survivors showed significant increases in the Ang2 levels and the Ang2/Ang1 ratios compared to survivors. A stepwise logistic regression analysis demonstrated that the Ang2 levels or the Ang2/Ang1 ratios on Day 1 independently predicted the 28-day mortality. The receiver operating characteristic curves of the Ang2 levels, and the Ang2/Ang1 ratios on Day 1 were good predictors of 28-day mortality. The Ang2 levels also independently predicted increases in the Sequential Organ Failure Assessment (SOFA) scores.ConclusionsWe observed a marked imbalance between Ang1 and Ang2 in favor of Ang2 in PCAS patients, and the effect was more prominent in non-survivors. Angiogenic factors and their soluble receptors, particularly Ang2 and Ang2/Ang1, are considered to be valuable predictive biomarkers in the development of organ dysfunction and poor outcomes in PCAS patients.


Thrombosis and Haemostasis | 2006

Chronological expression of PAR isoforms in acute liver injury and its amelioration by PAR2 blockade in a rat model of sepsis

Subrina Jesmin; Satoshi Gando; Sohel Zaedi; Fumika Sakuraya

The liver can be injured and its functions altered by activation of the coagulation and inflammatory processes in sepsis. The objective of the present study was to investigate the pattern of protease- activated receptors (PARs) over time in a model of acute liver injury induced by lipopolysaccharide (LPS); and whether PARs play a role in this process and exert their effects through inflammation and coagulation. Levels of tumor necrosis factor-a (TNF-a) were significantly expressed 1 h after LPS administration followed by: i) an increase in levels of tissue factor, factor VIIa, thrombin and plasminogen activator inhibitor-1; ii) unchanged or steady levels of tissue factor pathway inhibitor; and iii) subsequent deposition of fibrin in the liver tissue, that led to the elevation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), which are associated with liver injury. The expression of all PAR isoforms (1-4) was elevated, and each isoform had a distinct cellular localization (hepatocytes, Kupffer cells, the portal triad area, and central veins) and a time-dependent pattern of expression. The immuno-reactivity of PAR2 and 4 in Kupffer cells was intense. Interestingly, PAR2 blocking peptide improved the healing of liver injuries, an effect that was associated with suppression of TNF-a elevation, and normalization of coagulation and fibrinolysis. This ultimately led to decreased fibrin formation in the injured liver. The present study reveals a distinct chronological expression and cellular localization of PARs in LPS-mediated liver injury and shows that blockade of PAR2 may play a crucial role in treating liver injury, via normalization of inflammation, coagulation and fibrinolytic pathways.


Experimental Biology and Medicine | 2006

Effects of a selective endothelin a receptor antagonist on the expressions of iNOS and eNOS in the heart of early streptozotocin-induced diabetic rats.

Subrina Jesmin; Sohel Zaedi; Seiji Maeda; Iwao Yamaguchi; Katsutoshi Goto; Takashi Miyauchi

Vascular tone is regulated through the actions of locally produced agents. Among the vasoconstrictors, the most potent agent is endothelin (ET), which exerts its vasoconstrictor actions principally through ET type A (ETA) receptors. Of the vasodilators, nitric oxide (NO) seems to be the most important contributor to the acute regulation of vascular tone. Vasculopathy is an important feature of diabetes mellitus (DM). Endogenous ET-mediated vasoconstrictor tone is augmented in diabetic states, and conflicting results persist concerning the NO system in diabetes. The present study investigated the expressions of inducible NO synthases (iNOS) and endothelial NOS (eNOS) in the heart of diabetic animals and the effects of a selective ETA receptor antagonist on these alterations. Type I diabetes was induced by intraperitoneal injection of streptozotocin (65 mg/kg) in Sprague-Dawley rats, while control (Con) rats received only citrate buffer. After 1 week, the streptozotocin-administered rats were randomly divided into two groups: the selective ETA receptor antagonist–administered group (DM+TA-0201, 1 mg/kg/day, by osmotic minipump for 2 weeks) and the DM+vehicle group (comprising the diabetic rats that received saline). The random blood glucose level was 405 ± 103 mg/dl in DM animals, and this level was unchanged by ET antagonism. Body weight was more greatly decreased in DM rats than in Con rats, but the left ventricle to body weight ratio was increased in the DM group and was unaffected by ET antagonism. Protein expressions of eNOS and iNOS were assessed in the left ventricular tissues. eNOS expression was significantly increased in DM heart and was greatly inhibited by the treatment with ET antagonist. The expression of iNOS was also increased in early DM heart but was reversed by the ET antagonist. Thus, endothelin antagonism might be beneficial for DM heart by reversing the upregulated eNOS and iNOS expressions.


Experimental Biology and Medicine | 2006

EPA effect on NOS gene expression and on NO level in endothelin-1-induced hypertrophied cardiomyocytes.

Nobutake Shimojo; Subrina Jesmin; Sohel Zaedi; Masaaki Soma; Tsutomu Kobayashi; Seiji Maeda; Iwao Yamaguchi; Katsutoshi Goto; Takashi Miyauchi

Cardiomyocytes release (or metabolize) several diffusible agents (e.g., nitric oxide [NO], endothelin-1 [ET-1], and angiotensin II) that exert direct effects on myocyte function under various pathologic conditions. Although cardiac hypertrophy is a compensatory mechanism in response to different cardiovascular diseases, there can be a pathologic transition in which the myocardium becomes dysfunctional. Recently, NO has been found to be an important regulator of cardiac remodeling. Specifically, NO has been recognized as a potent antihypertrophic and proapoptotic mediator in cultured cardiomyocytes. We demonstrated that ET-1–induced hypertrophic remodeling in neonatal cardiomyocytes was arrested by pretreatment with eicosapentaenoic acid (EPA), a major component of fish oil. In some recent studies, EPA has demonstrated cardioprotective effects by modulating NO. This study investigated the changes in NO synthase (NOS) in ET-1–induced hypertrophied cardiomyocytes and in total levels of nitrates and nitrites. Ventricular cardiomyocytes were isolated from 2-day-old Sprague-Dawley rats and were cultured in D-MEM/Ham F12 supplemented with 0.1% fatty acid–free bovine serum albumin for 3 days. At Day 4 of culture, the cardiomyocytes were divided into three groups: control group, ET-1 (0.1 nM) group, and ET-1 pretreated with EPA (10 μM) group. NOS gene expression was evaluated 24 hrs after treatment using real-time polymerase chain reaction. Endothelial NOS (eNOS) mRNA expression was decreased in the ET-1 group compared with controls and was unchanged by pretreatment with EPA. mRNA expression of inducible NOS (iNOS) was significantly increased in ET-1–treated cardiomyocytes and was suppressed by EPA pretreatment. Neuronal NOS gene expression and total NO level did not exhibit a statistically significant change in any of the groups. There may be some interaction between ET-1, eNOS, and iNOS in ET-1–induced and EPA-regressed hypertrophied cardiomyocytes that suppress iNOS expression without modulating total NO level or eNOS gene expression.


Inflammation | 2013

The dynamics of angiogenic factors and their soluble receptors in relation to organ dysfunction in disseminated intravascular coagulation associated with sepsis.

Subrina Jesmin; Takesi Wada; Satoshi Gando; Sayeeda Sayeeda Sultana; Sohel Zaedi

We prospectively studied (1) the relationships between angiogenic factors, their soluble receptors and organ dysfunction and (2) the effects of disseminated intravascular coagulation (DIC)-induced platelet consumption, thrombin generation, and tissue hypoxia on the expression of the factors and receptors. Fifty patients with sepsis were classified into two subgroups: 37 patients with DIC and 13 patients without DIC. DIC patients showed higher Sequential Organ Failure Assessment (SOFA) scores, the prevalence of multiple organ dysfunction syndrome (MODS) and more increased soluble fibrin and lactate levels. We observed lower levels of vascular endothelial growth factor (VEGF), soluble VEGF receptor 2 (sVEGFR2), angiopoietin 1 (Ang1) and Ang1/Ang2, and higher sVEGFR1 and Ang2 levels in DIC patients, but not significant differences in soluble Tie2 expression during the study period. The levels of VEGF, sVEGFR1, and Ang2 in DIC patients correlated with the SOFA scores. Clear differences were observed in the levels of Ang2 in the DIC patients between survivors and nonsurvivors and between those with and without MODS. The area under receiver operating characteristic curves for predicting death and MODS by Ang2 were 0.710 and 0.784, respectively. The VEGF levels showed a marked correlation with the platelet counts. Soluble fibrin and lactate levels independently predicted increases in the levels of VEGF, sVEGFR1, and Ang2 in DIC patients. In conclusion, VEGF, sVEGFR1, Ang2, and Ang1/Ang2, especially Ang2, may have roles in the development of MODS in sepsis associated with DIC, and VEGF, sVEGFR1, and Ang2 serum levels correlated with the extent of DIC-induced platelet consumption, thrombin generation, and blood lactate levels.


Shock | 2009

Protease-activated Receptor 2 Blocking Peptide Counteracts Endotoxin-induced Inflammation And Coagulation And Ameliorates Renal Fibrin Deposition In A Rat Model Of Acute Renal Failure

Subrina Jesmin; Satoshi Gando; Sohel Zaedi; Shamsul Haque Prodhan; Atsushi Sawamura; Takashi Miyauchi; Michiaki Hiroe; Naoto Yamaguchi

ABSTRACT Glomerular and microvascular thrombosis due to the activation of inflammation and coagulation pathway contribute to the occurrence of acute renal failure in sepsis. The protease-activated receptors (PARs) have been shown to play an important role in the interplay between inflammation and coagulation. We hypothesized that PAR-2 blocking would improve glomerular and vascular thrombosis by attenuating inflammation and coagulation, leading to the prevention of acute renal failure, and assessed the effects of the PAR-2 blocking peptide (PAR-2 BP) in a rat model of LPS-induced acute renal failure. Levels of TNF-&agr; were significantly expressed 1 h after LPS administration, followed by 1) an increase in levels of tissue factor, factor VIIa, factor Xa, thrombin and plasminogen activator inhibitor 1; 2) unchanged levels of tissue factor pathway inhibitor; and 3) subsequent deposition of fibrin in kidney tissues, which led to the elevation of creatinine and blood urea nitrogen. Time-dependent PAR-2 expression was observed at both the gene and protein levels. Immunoreactivities of PAR-2 and fibrin were observed in the glomerulus and small arteries. Protease-activated receptor blocking peptide suppressed TNF-&agr; elevation and attenuated activation of the coagulation, thus leading to a decrease in fibrin formation and its deposition in the glomerulus. However, the levels of creatinine and blood urea nitrogen remained unchanged. These results show that PAR-2 plays a key role in the inflammatory and coagulation process of LPS-induced renal failure; however, PAR-2 inhibition alone does not affect improvement in the renal function.

Collaboration


Dive into the Sohel Zaedi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoto Yamaguchi

Ibaraki Prefectural University of Health Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge