Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soichi Kojima is active.

Publication


Featured researches published by Soichi Kojima.


The Plant Cell | 2007

The Organization of High-Affinity Ammonium Uptake in Arabidopsis Roots Depends on the Spatial Arrangement and Biochemical Properties of AMT1-Type Transporters

Lixing Yuan; Dominique Loqué; Soichi Kojima; Sabine Rauch; Keiki Ishiyama; Eri Inoue; Hideki Takahashi; Nicolaus von Wirén

The AMMONIUM TRANSPORTER (AMT) family comprises six isoforms in Arabidopsis thaliana. Here, we describe the complete functional organization of root-expressed AMTs for high-affinity ammonium uptake. High-affinity influx of 15N-labeled ammonium in two transposon-tagged amt1;2 lines was reduced by 18 to 26% compared with wild-type plants. Enrichment of the AMT1;2 protein in the plasma membrane and localization of AMT1;2 promoter activity in the endodermis and root cortex indicated that AMT1;2 mediates the uptake of ammonium entering the root via the apoplasmic transport route. An amt1;1 amt1;2 amt1;3 amt2;1 quadruple mutant (qko) showed severe growth depression under ammonium supply and maintained only 5 to 10% of wild-type high-affinity ammonium uptake capacity. Transcriptional upregulation of AMT1;5 in nitrogen-deficient rhizodermal and root hair cells and the ability of AMT1;5 to transport ammonium in yeast suggested that AMT1;5 accounts for the remaining uptake capacity in qko. Triple and quadruple amt insertion lines revealed in vivo ammonium substrate affinities of 50, 234, 61, and 4.5 μM for AMT1;1, AMT1;2, AMT1;3, and AMT1;5, respectively, but no ammonium influx activity for AMT2;1. These data suggest that two principle means of achieving effective ammonium uptake in Arabidopsis roots are the spatial arrangement of AMT1-type ammonium transporters and the distribution of their transport capacities at different substrate affinities.


The Plant Cell | 2010

Ammonium Triggers Lateral Root Branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-Dependent Manner

Joni E. Lima; Soichi Kojima; Hideki Takahashi; Nicolaus von Wirén

This study identifies that local ammonium supply triggers lateral root branching in Arabidopsis preferentially in the presence of AMT1;3. Ammonium thereby shapes lateral root architecture in a complementary manner to nitrate, which preferentially promotes lateral root elongation. Root development is strongly affected by the plant’s nutritional status and the external availability of nutrients. Employing split-root systems, we show here that local ammonium supply to Arabidopsis thaliana plants increases lateral root initiation and higher-order lateral root branching, whereas the elongation of lateral roots is stimulated mainly by nitrate. Ammonium-stimulated lateral root number or density decreased after ammonium or Gln supply to a separate root fraction and did not correlate with cumulative uptake of 15N-labeled ammonium, suggesting that lateral root branching was not purely due to a nutritional effect but most likely is a response to a sensing event. Ammonium-induced lateral root branching was almost absent in a quadruple AMMONIUM TRANSPORTER (qko, the amt1;1 amt1;2 amt1;3 amt2;1 mutant) insertion line and significantly lower in the amt1;3-1 mutant than in the wild type. Reconstitution of AMT1;3 expression in the amt1;3-1 or in the qko background restored higher-order lateral root development. By contrast, AMT1;1, which shares similar transport properties with AMT1;3, did not confer significant higher-order lateral root proliferation. These results show that ammonium is complementary to nitrate in shaping lateral root development and that stimulation of lateral root branching by ammonium occurs in an AMT1;3-dependent manner.


Proceedings of the National Academy of Sciences of the United States of America | 2014

CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner

Takao Araya; Mayu Miyamoto; Juliarni Wibowo; Akinori Suzuki; Soichi Kojima; Yumiko N. Tsuchiya; Shinichiro Sawa; Hiroo Fukuda; Nicolaus von Wirén; Hideki Takahashi

Significance Morphological adjustment is an important strategy for survival of living organisms in challenging environments. Plasticity of the root system architecture is critical for nutrient acquisition in plants. Among the essential elements, nitrogen (N) strongly affects root development. This article uncovers a key signaling mechanism regulating the outgrowth of lateral roots and expansion of plant root systems. The mechanism demonstrated in this study suggests an important morphological strategy for plant survival in N-poor environments. Morphological plasticity of root systems is critically important for plant survival because it allows plants to optimize their capacity to take up water and nutrients from the soil environment. Here we show that a signaling module composed of nitrogen (N)-responsive CLE (CLAVATA3/ESR-related) peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase is expressed in the root vasculature in Arabidopsis thaliana and plays a crucial role in regulating the expansion of the root system under N-deficient conditions. CLE1, -3, -4, and -7 were induced by N deficiency in roots, predominantly expressed in root pericycle cells, and their overexpression repressed the growth of lateral root primordia and their emergence from the primary root. In contrast, clv1 mutants showed progressive outgrowth of lateral root primordia into lateral roots under N-deficient conditions. The clv1 phenotype was reverted by introducing a CLV1 promoter-driven CLV1:GFP construct producing CLV1:GFP fusion proteins in phloem companion cells of roots. The overaccumulation of CLE2, -3, -4, and -7 in clv1 mutants suggested the amplitude of the CLE peptide signals being feedback-regulated by CLV1. When CLE3 was overexpressed under its own promoter in wild-type plants, the length of lateral roots was negatively correlated with increasing CLE3 mRNA levels; however, this inhibitory action of CLE3 was abrogated in the clv1 mutant background. Our findings identify the N-responsive CLE-CLV1 signaling module as an essential mechanism restrictively controlling the expansion of the lateral root system in N-deficient environments.


The Journal of Membrane Biology | 2006

Molecular Mechanisms of Urea Transport in Plants

Soichi Kojima; Anne Bohner; N. von Wirén

Urea is a soil nitrogen form available to plant roots and a secondary nitrogen metabolite liberated in plant cells. Based on growth complementation of yeast mutants and “in-silico analysis”, two plant families have been identified and partially characterized that mediate membrane transport of urea in heterologous expression systems. AtDUR3 is a single Arabidopsis gene belonging to the sodium solute symporter family that cotransports urea with protons at high affinity, while members of the tonoplast intrinsic protein (TIP) subfamily of aquaporins transport urea in a channel-like manner. The following review summarizes current knowledge on the membrane localization, energetization and regulation of these two types of urea transporters and discusses their possible physiological roles in planta.


Plant and Cell Physiology | 2009

AtAMT1;4, a Pollen-Specific High-Affinity Ammonium Transporter of the Plasma Membrane in Arabidopsis

Lixing Yuan; Lucile Graff; Dominique Loqué; Soichi Kojima; Yumiko N. Tsuchiya; Hideki Takahashi; Nicolaus von Wirén

Pollen represents an important nitrogen sink in flowers to ensure pollen viability. Since pollen cells are symplasmically isolated during maturation and germination, membrane transporters are required for nitrogen import across the pollen plasma membrane. This study describes the characterization of the ammonium transporter AtAMT1;4, a so far uncharacterized member of the Arabidopsis AMT1 family, which is suggested to be involved in transporting ammonium into pollen. The AtAMT1;4 gene encodes a functional ammonium transporter when heterologously expressed in yeast or when overexpressed in Arabidopsis roots. Concentration-dependent analysis of 15N-labeled ammonium influx into roots of AtAMT1;4-transformed plants allowed characterization of AtAMT1;4 as a high-affinity transporter with a Km of 17 μM. RNA and protein gel blot analysis showed expression of AtAMT1;4 in flowers, and promoter–gene fusions to the green fluorescent protein (GFP) further defined its exclusive expression in pollen grains and pollen tubes. The AtAMT1;4 protein appeared to be localized to the plasma membrane as indicated by protein gel blot analysis of plasma membrane-enriched membrane fractions and by visualization of GFP-tagged AtAMT1;4 protein in pollen grains and pollen tubes. However, no phenotype related to pollen function could be observed in a transposon-tagged line, in which AtAMT1;4 expression is disrupted. These results suggest that AtAMT1;4 mediates ammonium uptake across the plasma membrane of pollen to contribute to nitrogen nutrition of pollen via ammonium uptake or retrieval.


Plant and Cell Physiology | 2013

Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots

Kazuhiro Funayama; Soichi Kojima; Mayumi Tabuchi-Kobayashi; Yuki Sawa; Yosuke Nakayama; Toshihiko Hayakawa; Tomoyuki Yamaya

Among three genes for cytosolic glutamine synthetase (OsGS1;1, OsGS1;2 and OsGS1;3) in rice (Oryza sativa L.) plants, the OsGS1;2 gene is known to be mainly expressed in surface cells of roots, but its function was not clearly understood. We characterized knock-out mutants caused by the insertion of an endogenous retrotransposon Tos17 into exon 2 of OsGS1;2. Homozygously inserted mutants showed severe reduction in active tiller number and hence panicle number at harvest. Other yield components, such as spikelet number per panicle, 1,000-spikelet weight and proportion of well ripened grains, were nearly identical between the mutants and wild-type plants. When the contents of free amino acids in roots were compared between the mutants and the wild type, there were marked reductions in contents of glutamine, glutamate, asparagine and aspartate, but a remarkable increase in free ammonium ions in the mutants. Concentrations of amino acids and ammonium ions in xylem sap behaved in a similar fashion. Re-introduction of OsGS1;2 cDNA under the control of its own promoter into the knock-out mutants successfully restored yield components to wild-type levels as well as ammonium concentration in xylem sap. The results indicate that GS1;2 is important in the primary assimilation of ammonium ions taken up by rice roots, with GS1;1 in the roots unable to compensate for GS1;2 functions.


Amino Acids | 2010

Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants

Wataru Tamura; Yusuke Hidaka; Mayumi Tabuchi; Soichi Kojima; Toshihiko Hayakawa; Tadashi Sato; Mitsuhiro Obara; Mikiko Kojima; Hitoshi Sakakibara; Tomoyuki Yamaya

Rice plants grown in anaerobic paddy soil prefer to use ammonium ion as an inorganic nitrogen source for their growth. The ammonium ions are assimilated by the coupled reaction of glutamine synthetase (GS) and glutamate synthase (GOGAT). In rice, there is a small gene family for GOGAT: there are two NADH-dependent types and one ferredoxin (Fd)-dependent type. Fd-GOGAT is important in the re-assimilation of photorespiratorily generated ammonium ions in chloroplasts. Although cell-type and age-dependent expression of two NADH-GOGAT genes has been well characterized, metabolic function of individual gene product is not fully understood. Reverse genetics approach is a direct way to characterize functions of isoenzymes. We have isolated a knockout rice mutant lacking NADH-dependent glutamate synthase1 (NADH-GOGAT1) and our studies show that this isoenzyme is important for primary ammonium assimilation in roots at the seedling stage. NADH-GOGAT1 is also important in the development of active tiller number, when the mutant was grown in paddy field until the harvest. Expression of NADH-GOGAT2 and Fd-GOGAT in the mutant was identical with that in wild-type, suggesting that these GOGATs are not able to compensate for NADH-GOGAT1 function.


Physiologia Plantarum | 2014

NADH-dependent glutamate synthase plays a crucial role in assimilating ammonium in the Arabidopsis root

Noriyuki Konishi; Keiki Ishiyama; Kaya Matsuoka; Ikumi Maru; Toshihiko Hayakawa; Tomoyuki Yamaya; Soichi Kojima

Plant roots under nitrogen deficient conditions with access to both ammonium and nitrate ions, will take up ammonium first. This preference for ammonium rather than nitrate emphasizes the importance of ammonium assimilation machinery in roots. Glutamine synthetase (GS) and glutamate synthase (GOGAT) catalyze the conversion of ammonium and 2-oxoglutarate to glutamine and glutamate. Higher plants have two GOGAT species, ferredoxin-dependent glutamate synthase (Fd-GOGAT) and nicotinamide adenine dinucleotide (NADH)-GOGAT. While Fd-GOGAT participates in the assimilation of ammonium, which is derived from photorespiration in leaves, NADH-GOGAT is highly expressed in roots and its importance needs to be elucidated. While ammonium as a minor nitrogen form in most soils is directly taken up, nitrate as the major nitrogen source needs to be converted to ammonium prior to uptake. The aim of this study was to investigate and quantify the contribution of NADH-GOGAT to the ammonium assimilation in Arabidopsis (Arabidopsis thaliana Columbia) roots. Quantitative real-time polymerase chain reaction (PCR) and protein gel blot analysis showed an accumulation of NADH-GOGAT in response to ammonium supplied to the roots. In addition the localization of NADH-GOGAT and Fd-GOGAT did not fully overlap. Promoter-β-glucuronidase (GUS) fusion analysis and immunohistochemistry showed that NADH-GOGAT was highly accumulated in non-green tissue like vascular bundles, shoot apical meristem, pollen, stigma and roots. Reverse genetic approaches suggested a reduction in glutamate production and biomass accumulation in NADH-GOGAT transfer DNA (T-DNA) insertion lines under normal CO2 condition. The data emphasize the importance of NADH-GOGAT in the ammonium assimilation in Arabidopsis roots.


Plant Physiology | 2015

Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice

Shinya Wada; Yasukazu Hayashida; Masanori Izumi; Takamitsu Kurusu; Shigeru Hanamata; Keiichi Kanno; Soichi Kojima; Tomoyuki Yamaya; Kazuyuki Kuchitsu; Amane Makino; Hiroyuki Ishida

Characterization of a rice mutant defective in autophagy highlights its importance in nitrogen remobilization from senescent leaves, biomass increase, and nitrogen use efficiency in the vegetative plant. Much of the nitrogen in leaves is distributed to chloroplasts, mainly in photosynthetic proteins. During leaf senescence, chloroplastic proteins, including Rubisco, are rapidly degraded, and the released nitrogen is remobilized and reused in newly developing tissues. Autophagy facilitates the degradation of intracellular components for nutrient recycling in all eukaryotes, and recent studies have revealed critical roles for autophagy in Rubisco degradation and nitrogen remobilization into seeds in Arabidopsis (Arabidopsis thaliana). Here, we examined the function of autophagy in vegetative growth and nitrogen usage in a cereal plant, rice (Oryza sativa). An autophagy-disrupted rice mutant, Osatg7-1, showed reduced biomass production and nitrogen use efficiency compared with the wild type. While Osatg7-1 showed early visible leaf senescence, the nitrogen concentration remained high in the senescent leaves. 15N pulse chase analysis revealed suppression of nitrogen remobilization during leaf senescence in Osatg7-1. Accordingly, the reduction of nitrogen available for newly developing tissues in Osatg7-1 likely led its reduced leaf area and tillers. The limited leaf growth in Osatg7-1 decreased the photosynthetic capacity of the plant. Much of the nitrogen remaining in senescent leaves of Osatg7-1 was in soluble proteins, and the Rubisco concentration in senescing leaves of Osatg7-1 was about 2.5 times higher than in the wild type. Transmission electron micrographs showed a cytosolic fraction rich with organelles in senescent leaves of Osatg7-1. Our results suggest that autophagy contributes to efficient nitrogen remobilization at the whole-plant level by facilitating protein degradation for nitrogen recycling in senescent leaves.


Soil Science and Plant Nutrition | 2008

Localization of acid phosphatase activities in the roots of white lupin plants grown under phosphorus-deficient conditions

Jun Wasaki; Soichi Kojima; Hayato Maruyama; Susan Haase; Mitsuru Osaki; Ellen Kandeler

Abstract Acid phosphatase (APase) produced by the cluster roots of white lupin (Lupinus albus L.) plays an important role in inorganic phosphate (Pi) acquisition. Although the importance of cluster roots in Pi acquisition is well known, information on the distribution of APase within tissues of normal and cluster roots is lacking. Isoelectric focusing of APase isoforms as well as histochemical localization and visualization of APase were used to clarify the importance of secretory APase for P nutrition of white lupin grown under P deficiency. Isoelectric focusing revealed that both the secretory type and other major APase isoforms probably involved in P translocation were inducible. The major activity in the rhizosphere soil of cluster roots and roots grown under hydroponic conditions corresponded to LASAP2, a previously purified APase secreted from white lupin roots. Histochemical localization using enzyme-labeled fluorescence (ELF)-97 phosphate as a substrate was applied to rhizosphere samples. This substrate provides fluorescent precipitates after hydrolysis by phosphatase. Strong APase activity in the epidermal tissues of normal roots and cluster rootlets and in root hairs of cluster rootlets under P deficiency was detected. These results support the hypothesis that APase activities in the rhizosphere liberate Pi and supply it to white lupin plants grown under P-deficient conditions.

Collaboration


Dive into the Soichi Kojima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lixing Yuan

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge