Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sol Schulman is active.

Publication


Featured researches published by Sol Schulman.


Nature | 2010

Structure of a bacterial homologue of vitamin K epoxide reductase.

Weikai Li; Sol Schulman; Rachel J. Dutton; Dana Boyd; Jon Beckwith

Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain γ-carboxylation of many blood coagulation factors. Here, we report the 3.6 Å crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins to reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Vitamin K epoxide reductase prefers ER membrane-anchored thioredoxin-like redox partners

Sol Schulman; Belinda Wang; Weikai Li

Vitamin K epoxide reductase (VKOR) sustains blood coagulation by reducing vitamin K epoxide to the hydroquinone, an essential cofactor for the γ-glutamyl carboxylation of many clotting factors. The physiological redox partner of VKOR remains uncertain, but is likely a thioredoxin-like protein. Here, we demonstrate that human VKOR has the same membrane topology as the enzyme from Synechococcus sp., whose crystal structure was recently determined. Our results suggest that, during the redox reaction, Cys43 in a luminal loop of human VKOR forms a transient disulfide bond with a thioredoxin (Trx)-like protein located in the lumen of the endoplasmic reticulum (ER). We screened for redox partners of VKOR among the large number of mammalian Trx-like ER proteins by testing a panel of these candidates for their ability to form this specific disulfide bond with human VKOR. Our results show that VKOR interacts strongly with TMX, an ER membrane-anchored Trx-like protein with a unique CPAC active site. Weaker interactions were observed with TMX4, a close relative of TMX, and ERp18, the smallest Trx-like protein of the ER. We performed a similar screen with Ero1-α, an ER-luminal protein that oxidizes the Trx-like protein disulfide isomerase. We found that Ero1-α interacts with most of the tested Trx-like proteins, although only poorly with the membrane-anchored members of the family. Taken together, our results demonstrate that human VKOR employs the same electron transfer pathway as its bacterial homologs and that VKORs generally prefer membrane-bound Trx-like redox partners.


Journal of Cell Biology | 2011

Processing and turnover of the Hedgehog protein in the endoplasmic reticulum

Xin Chen; Hanna Tukachinsky; Chih-Hsiang Huang; Cindy Y. Jao; Yue-Ru Chu; Hsiang-Yun Tang; Britta Mueller; Sol Schulman; Adrian Salic

Autocatalytic processing of the Hedgehog ligand from its precursor protein relies on protein disulfide isomerase and ER-associated degradation.


Genome Medicine | 2015

Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders.

Sarah K. Westbury; Ernest Turro; Daniel Greene; Claire Lentaigne; Anne M. Kelly; Tadbir K. Bariana; Ilenia Simeoni; Xavier Pillois; Antony P. Attwood; Steve Austin; Sjoert B. G. Jansen; Tamam Bakchoul; Abi Crisp-Hihn; Wendy N. Erber; Rémi Favier; Nicola S. Foad; Michael Gattens; Jennifer Jolley; Ri Liesner; Stuart Meacham; Carolyn M. Millar; Alan T. Nurden; Kathelijne Peerlinck; David J. Perry; Pawan Poudel; Sol Schulman; Harald Schulze; Jonathan Stephens; Bruce Furie; Peter N. Robinson

BackgroundHeritable bleeding and platelet disorders (BPD) are heterogeneous and frequently have an unknown genetic basis. The BRIDGE-BPD study aims to discover new causal genes for BPD by high throughput sequencing using cluster analyses based on improved and standardised deep, multi-system phenotyping of cases.MethodsWe report a new approach in which the clinical and laboratory characteristics of BPD cases are annotated with adapted Human Phenotype Ontology (HPO) terms. Cluster analyses are then used to characterise groups of cases with similar HPO terms and variants in the same genes.ResultsWe show that 60% of index cases with heritable BPD enrolled at 10 European or US centres were annotated with HPO terms indicating abnormalities in organ systems other than blood or blood-forming tissues, particularly the nervous system. Cases within pedigrees clustered closely together on the bases of their HPO-coded phenotypes, as did cases sharing several clinically suspected syndromic disorders. Cases subsequently found to harbour variants in ACTN1 also clustered closely, even though diagnosis of this recently described disorder was not possible using only the clinical and laboratory data available to the enrolling clinician.ConclusionsThese findings validate our novel HPO-based phenotype clustering methodology for known BPD, thus providing a new discovery tool for BPD of unknown genetic basis. This approach will also be relevant for other rare diseases with significant genetic heterogeneity.


Blood | 2016

A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders

Ilenia Simeoni; Jonathan Stephens; Fengyuan Hu; Sri V.V. Deevi; Karyn Megy; Tadbir K. Bariana; Claire Lentaigne; Sol Schulman; Suthesh Sivapalaratnam; Minka J.A. Vries; Sarah K. Westbury; Daniel Greene; Sofia Papadia; Marie Christine Alessi; Antony P. Attwood; Matthias Ballmaier; Gareth Baynam; Emilse Bermejo; Marta Bertoli; Paul F. Bray; Loredana Bury; Marco Cattaneo; Peter William Collins; Louise C. Daugherty; Rémi Favier; Deborah L. French; Bruce Furie; Michael Gattens; Manuela Germeshausen; Cedric Ghevaert

Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.


Blood | 2016

A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss

Simon Stritt; Paquita Nurden; Ernest Turro; Daniel Greene; Sjoert B. G. Jansen; Sarah K. Westbury; Romina Petersen; William Astle; Sandrine Marlin; Tadbir K. Bariana; Myrto Kostadima; Claire Lentaigne; Stephanie Maiwald; Sofia Papadia; Anne M. Kelly; Jonathan Stephens; Christopher J. Penkett; Sofie Ashford; Salih Tuna; Steve Austin; Tamam Bakchoul; Peter William Collins; Rémi Favier; Michele P. Lambert; Mary Mathias; Carolyn M. Millar; Rutendo Mapeta; David J. Perry; Sol Schulman; Ilenia Simeoni

Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MKs). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping, and similarity regression. We describe 2 unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was linked to reduced proplatelet formation from cultured MKs, cell clustering, and abnormal cortical filamentous actin. Similarly, in platelets, there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Overexpression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insight into the autoregulation of DIAPH1 activity.


Science Translational Medicine | 2016

A dominant gain-of-function mutation in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies

Ernest Turro; Daniel Greene; Anouck Wijgaerts; Chantal Thys; Claire Lentaigne; Tadbir K. Bariana; Sarah K. Westbury; Anne M. Kelly; Dominik Selleslag; Jonathan Stephens; Sofia Papadia; Ilenia Simeoni; Christopher J. Penkett; Sofie Ashford; Antony P. Attwood; Steve Austin; Tamam Bakchoul; Peter William Collins; Sri V.V. Deevi; Rémi Favier; Myrto Kostadima; Michele P. Lambert; Mary Mathias; Carolyn M. Millar; Kathelijne Peerlinck; David J. Perry; Sol Schulman; Deborah Whitehorn; Christine Wittevrongel; Marc De Maeyer

E527K hyperactive SRC results in megakaryocytes with increased podosome formation, thrombocytopenia, myelofibrosis, bleeding, and bone pathologies. SRC shows its stripes The nonreceptor tyrosine kinase SRC is a proto-oncogene that has been associated with cancer progression. Now, Turro et al. find a gain-of-function mutation in SRC in nine patients with myelofibrosis, bleeding, and bone disorders. This mutation prevented SRC from inhibiting itself, and the overactive SRC resulted in enhanced tyrosine phosphorylation in a zebrafish model as well as in patient-derived cells. In patients with myelofibrosis, this SRC mutation was associated with increased outgrowth of myeloid and megakaryocyte colonies, with abnormal platelet production, which could be rescued by SRC kinase inhibition. These findings may be important for understanding the severe bleeding in cancer patients treated with Src family kinase inhibitors. The Src family kinase (SFK) member SRC is a major target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC’s self-inhibitory capacity, which we confirmed with in vitro studies showing increased SRC kinase activity and enhanced Tyr419 phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients’ platelets, resulting in enhanced overall tyrosine phosphorylation. Patients with myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of α-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC form MKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC–positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients’ blood and bone phenotypes. Similar studies of platelets and MKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors.


Lung Cancer | 2015

Responses to the multitargeted MET/ALK/ROS1 inhibitor crizotinib and co-occurring mutations in lung adenocarcinomas with MET amplification or MET exon 14 skipping mutation

Susan E. Jorge; Sol Schulman; Jason A. Freed; Paul A. VanderLaan; Deepa Rangachari; Susumu Kobayashi; Mark S. Huberman; Daniel B. Costa

INTRODUCTION Genomic aberrations involving ALK, ROS1 and MET can be driver oncogenes in lung adenocarcinomas. Identification of tyrosine kinase inhibitors (TKIs) with activity against these tumors and of preclinical systems to model response are warranted. METHODS We analyzed cases with lung adenocarcinomas for representative genomic aberrations, evaluated the response to the multitargeted MET/ALK/ROS1 crizotinib TKI in cases with MET aberrations and profiled lung cancer cell lines with the aforementioned genomic changes. RESULTS Lung cancer cell lines with ALK rearrangement, ROS1 rearrangement or MET amplification had expected in vitro responses to crizotinib and the ALK/ROS1 TKI ceritinib. However, a commercially-available cell line with MET exon 14 skipping mutation and co-occurring PIK3CA-p.Glu545Lys mutation did not respond to crizotinib; suggesting the latter abrogated response. 10% of MET exon 14 skipping mutation co-occurred with PIK3CA mutation in the TCGA cohort. Putative crizotinib-responsive somatic mutations (ALK rearrangements, ROS1 rearrangements, high level MET amplification or MET exon 14 skipping mutations) were present in 10% of lung adenocarcinomas analyzed at our service and in 9.5% of the TCGA lung adenocarcinoma database. One patient each whose advanced tumors harbored high level MET amplification with wild-type PIK3CA or MET exon 14 skipping mutation with PIK3CA-p.Glu542Lys had significant responses to crizotinib; suggesting that PIK3CA co-mutation did not affect clinical response. CONCLUSIONS Approximately 10% of lung adenocarcinomas harbor aberrations that are targetable using the approved multitargeted TKI crizotinib. MET exon 14 skipping mutation predicts for response to MET TKIs in human lung adenocarcinomas but co-occurrence of PIK3CA mutation needs to be better evaluated as a modifier of response to TKI therapy. MET TKIs should not be omitted from MET exon 14 skipping mutated tumors until further preclinical and clinical data can confirm or refute mechanisms of primary or acquired resistance to crizotinib and other MET TKIs in these recalcitrant cancers.


Blood | 2016

A comprehensive high-throughput sequencing test for the diagnosis of inherited bleeding, thrombotic and platelet disorders

Ilenia Simeoni; Jonathan Stephens; Fengyuan Hu; Sri V.V. Deevi; Karyn Megy; Tadbir K. Bariana; Claire Lentaigne; Sol Schulman; Suthesh Sivapalaratnam; Minka J.A. Vries; Sarah K. Westbury; Daniel Greene; Sofia Papadia; Marie-Christine Alessi; Antony P. Attwood; Matthias Ballmaier; Gareth Baynam; Emilse Bermejo; Marta Bertoli; Paul F. Bray; Loredana Bury; Marco Cattaneo; Peter William Collins; Louise C. Daugherty; Rémi Favier; Deborah L. French; Bruce Furie; Michael Gattens; Manuela Germeshausen; Cedric Ghevaert

Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.


Journal of Clinical Investigation | 2018

Tie2 protects the vasculature against thrombus formation in systemic inflammation

Sarah J. Higgins; Karen De Ceunynck; John A. Kellum; Xiuying Chen; Xuesong Gu; Sharjeel A. Chaudhry; Sol Schulman; Towia A. Libermann; Shulin Lu; Nathan I. Shapiro; David C. Christiani; Robert Flaumenhaft; Samir M. Parikh

Disordered coagulation contributes to death in sepsis and lacks effective treatments. Existing markers of disseminated intravascular coagulation (DIC) reflect its sequelae rather than its causes, delaying diagnosis and treatment. Here we show that disruption of the endothelial Tie2 axis is a sentinel event in septic DIC. Proteomics in septic DIC patients revealed a network involving inflammation and coagulation with the Tie2 antagonist, angiopoietin-2 (Angpt-2), occupying a central node. Angpt-2 was strongly associated with traditional DIC markers including platelet counts, yet more accurately predicted mortality in 2 large independent cohorts (combined N = 1,077). In endotoxemic mice, reduced Tie2 signaling preceded signs of overt DIC. During this early phase, intravital imaging of microvascular injury revealed excessive fibrin accumulation, a pattern remarkably mimicked by Tie2 deficiency even without inflammation. Conversely, Tie2 activation normalized prothrombotic responses by inhibiting endothelial tissue factor and phosphatidylserine exposure. Critically, Tie2 activation had no adverse effects on bleeding. These results mechanistically implicate Tie2 signaling as a central regulator of microvascular thrombus formation in septic DIC and indicate that circulating markers of the Tie2 axis could facilitate earlier diagnosis. Finally, interventions targeting Tie2 may normalize coagulation in inflammatory states while averting the bleeding risks of current DIC therapies.

Collaboration


Dive into the Sol Schulman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Furie

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Gattens

Cambridge University Hospitals NHS Foundation Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge